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Abstract 71 

We assembled teams of genomics professionals to assess whether we could rapidly 72 

develop pipelines to answer biological questions commonly asked by biologists and others new 73 

to bioinformatics by facilitating analysis of high-throughput sequencing data. In January 2015, 74 

teams were assembled on the National Institutes of Health (NIH) campus to address questions in 75 

the DNA-seq, epigenomics, metagenomics and RNA-seq subfields of genomics. The only two 76 

rules for this hackathon were that either the data used were housed at the National Center for 77 

Biotechnology Information (NCBI) or would be submitted there by a participant in the next six 78 

months, and that all software going into the pipeline was open-source or open-use. Questions 79 

proposed by organizers, as well as suggested tools and approaches, were distributed to 80 
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participants a few days before the event and were refined during the event. Pipelines were 81 

published on GitHub, a web service providing publicly available, free-usage tiers for 82 

collaborative software development (https://github.com/features/). The code was published at 83 

https://github.com/DCGenomics/ with separate repositories for each team, starting with 84 

hackathon_v001. 85 

 86 

Introduction 87 

Genomic analysis leverages large datasets generated by sequencing technologies in order 88 

to gain better understanding of the genomes of humans and other species. Given its reliance on 89 

large datasets with complex interactions and its fairly regularized metadata, genomic analysis is 90 

an exemplar of “big data” science (1). Genomic analysis has shown great promise in finding 91 

actionable variants for rare diseases (2), as well as directing more specific clinical action for 92 

common diseases (3, 4). 93 

Due to its potential for significant clinical and basic science discoveries, genomics has 94 

drawn many newcomers from the biological and computational sciences, as well as investigators 95 

from new graduate programs in bioinformatics. While many of these investigators can run 96 

established pipelines on local, public, or combined datasets, most do not have the expertise or 97 

resources to establish and validate novel pipelines. Additionally, highly experienced genomic 98 

investigators often lack the resources necessary to generate and distribute pipelines with broader 99 

applicability outside their specific area of research. In this study, we aimed to assess whether we 100 

could close this gap by bringing genomics experts from around the world together to establish 101 

public pipelines that can be both used by newcomers to genomics and refined by other seasoned 102 

professionals. 103 
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We sought to achieve this by hosting a hackathon at the National Institutes of Health 104 

(NIH) in Bethesda, Maryland. Hackathons are events in which individuals with expertise in 105 

various areas of software development and science come together to collaborate intensively over 106 

a period of several days, typically focusing on a specific goal or application. This form of 107 

crowdsourcing facilitates innovative ideas and agile development of solutions for challenging 108 

questions (5). Hackathon participants also benefit from the opportunity to learn new skills, 109 

network with other professionals, and gain the personal satisfaction of using their expertise to 110 

help the community. 111 

Those of us who had previously attended hackathons had been motivated by learning 112 

from the experience, personal curiosity, professional networking, and the satisfaction of applying 113 

one’s skills to help the community. These previously attended hackathons included 114 

IT/programming-centric events, such as the Kaiser Permanente-sponsored hackathon for apps 115 

that could help prevent and fight obesity (6);  bioinformatics-oriented events, such as the 116 

Illumina-sponsored hackathon to create apps in their proprietary BaseSpace cloud computing 117 

environment (7); and events focused on social issues, such as exploring women’s empowerment 118 

and nutrition in the developing world (8). 119 

Hackathons are more common in software development communities than in 120 

bioinformatics and medicine, and may represent a valuable opportunity to accelerate biomedical 121 

discovery and innovation. Hackathons have gained popularity in the bioinformatics community 122 

in the last several years, though the environment and culture of a bioinformatics hackathon 123 

differs from that of typical IT/programming-centric hackathons (9). Bioinformatic hackathons 124 

more closely resemble a scientific discussion and provide an opportunity to learn and delve more 125 

deeply into specific areas. Typically a successful hackathon requires participants with both 126 
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coding/programming skills and domain-specific knowledge (e.g. DNA-seq and RNA-seq).  127 

Four teams of 4-6 participants came together for this hackathon to answer questions in 128 

the fields of DNA-seq, RNA-seq, metagenomics and epigenomics. The initial topics for 129 

exploration were based on questions bioinformaticians frequently ask computational cores. 130 

Massive amounts of data have been generated and made publicly available in these fields using 131 

high-throughput experimental technologies. Powerful computational pipelines are needed to 132 

handle such large datasets, and to help analyze the data to answer biomedical questions. In 133 

addition, these topics have seen a significant increase in publications in recent years, as 134 

demonstrated in Figure 1. 135 

Fig. 1: Articles indexed in MEDLINE for topics related to each of the four teams. 136 

Background for Hackathon Team Goals 137 

DNA-seq Team 138 

The goal for the DNA-seq Team was to create an easy-to-use integrated pipeline using 139 

existing tools to predict somatic variants from exome sequencing data, find shared and unique 140 

variants between samples, and filter and annotate the variants. Somatic mutation calling is 141 

particularly relevant to cancer genome characterization (10). Several methods exist to predict 142 

somatic variants by interrogating genomic sequences of tumor-germline paired samples (11-13). 143 

Issues with these variant calling algorithms are well known; each of the algorithms have 144 

strengths and weaknesses, and are sensitive to the datasets used (14). One way to test the 145 

reliability of the called variants and gain more confidence is to combine putative calls from 146 

several algorithms and use strict filtering criteria. Thus, we wanted to create a pipeline that 147 

included several existing calling algorithms. In addition, we intended to build a module within 148 

the pipeline to predict eQTLs using the called somatic variants and RNA-seq data from the same 149 
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individuals. To achieve our goal of building an integrated pipeline, a paired exome sequence 150 

dataset as well as an RNA sequence dataset were required. 151 

Epigenomics Team 152 

Computational cores contain an abundance of epigenetic data encompassing a wide 153 

variety of markers over many different cell types. This abundance of information empowers labs 154 

to infer how these different markers contribute to gene expression and chromatin state. However, 155 

little standardization or collaboration exists among investigators seeking to elucidate 156 

relationships among epigenetic modifiers, leading to inconsistencies between analyses. The 157 

Epigenomics Team sought to analyze the extent to which DNA methylation and histone 158 

modifications affect gene expression using regression models. In addition to modelling, we 159 

wanted to create a framework for integrating experimental ChIP-seq or DNA methylation data 160 

provided by users into models of gene expression that were informed by publicly available data. 161 

A resource that allows users to make sense of their data in the context of the existing wealth of 162 

public data on epigenetic regulation provided an attractive and worthwhile goal. 163 

Metagenomics Team 164 

The Metagenomics Team worked on the problem of identifying the presence of viral 165 

sequences within human genomic or metagenomic sequences. The ability to locate these viral 166 

sequences offers the prospect of using computational tools for diagnostic purposes (15). Viral 167 

sequences may be embedded within human genomic sequence data as endogenous retroviruses 168 

or associated with bacterial consortia of the human microbiome as either lytic phages or 169 

prophages integrated into the bacterial genomes. Several studies have demonstrated the 170 

association between human-specific endogenous retroviruses (HERV) and diseases such as 171 

breast cancer (16, 17). In the context of the human microbiome, previous studies have used 172 
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metagenomics to describe differences in bacterial consortia (18), but only a few studies have 173 

applied a metagenomics workflow to viral sequences present in human microbiome data (19, 174 

20).  175 

This team’s aim was to develop and compare analytical pipelines to identify and quantify 176 

viral sequences within human genomic and metagenomic datasets. The pipeline could be used in 177 

the characterization of the viral community in understanding the role viruses play in various 178 

environmental niches and diseases eventually associating differentially abundant viruses in 179 

disease or phenotype, despite database and sparsity issues potentially using marker-gene 180 

methodologies (21). 181 

RNA-seq Team 182 

RNA sequencing (RNA-seq) has become a useful technique for detecting gene 183 

expression levels, alternate splicing, and gene fusions (22). RNA variant detection can be 184 

important in cancer research to detect significant changes in tumor progression (23). The team’s 185 

initial goal was to build a variant calling pipeline using RNA-seq data from melanoma samples 186 

to differentiate germline and somatic mutations from RNA editing. Some sample datasets from 187 

the National Center for Biotechnology Information’s (NCBI) Sequence Read Archive (SRA) 188 

were suggested. Data could then be used to compare germline variants with known germline 189 

variants from the dbGaP version of the 1000 Genomes Project and ClinVar (24, 25). Another 190 

task was to determine isoform specificity based on mapping to 454 data using available software 191 

for the correlation with RNA structure prediction. Data could also be compared with the NCI-60 192 

cell line variants. Also, we could try to determine mosaicism with germ-line vs intratumor data. 193 

Additional tasks were to detect systematic quality score variants indicating RNA editing with 194 

Illumina and Pacbio reads, correlate with RNA structure prediction and to fix HTseq annotation 195 
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of tiny exons in UTRs. 196 

Materials and Methods 197 

Advertising, Preparation, and Logistics 198 

Four team leads were selected by Busby to participate in the event. Team leads were 199 

experts in particular areas and they suggested scientific areas, datasets, or tools that they were 200 

familiar with. In order to recruit participants, we sent an announcement (Supporting Information 201 

1) to contacts in Busby's network encouraging genomics professionals to apply for the 202 

hackathon, as well as posting it on several NCBI social media outlets, such as Facebook, Twitter, 203 

and Meetup.  204 

After the application deadline, Busby reviewed the applicants for minimum necessary 205 

experience, and sent the applicants’ written statements to team leads, encouraging them to pick 206 

five members and two alternates. Team leads reviewed the 131 qualified applicants and selected 207 

a total of 27 people to fill the four teams of about 6 people each. Members were chosen solely on 208 

the interest and motivational statements on their forms, and credentials and experience were not 209 

further researched. One goal of the hackathon was to bring together scientists with different 210 

expertise. Some of the participants were more traditional bench biologists and some were 211 

bioinformaticists with more computational knowledge. This was a networking experience for 212 

local and international scientists, including two who traveled from Germany and several from 213 

outside of Maryland.  214 

Technical professional staff from NCBI, including programmers and system 215 

administrators, were also brought in and “embedded” with the team to facilitate programming 216 

knowledge transfer and debugging. In addition, a librarian from the NIH Library served as an 217 

editor, providing guidance on writing and organization of the manuscript. 218 
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The teams convened in a large meeting space that had Wi-Fi access, a nearby cafeteria, 219 

plenty of tables to provide adequate room to spread out, and easels with markers for easier team 220 

discussion. Space was available outside of the meeting room if participants needed a quiet space 221 

apart from the larger group. To optimize time available to work on the projects, an hour was set 222 

aside each day for a “working lunch” with the option to order in as a group. There was also an 223 

optional group dinner each night that provided more time to network, socialize, and continue 224 

work on the scientific problems. 225 

The schedule was circulated the week prior to the hackathon. The agenda was semi-226 

structured with time allocated for various activities such as obtaining data, pipeline building, and 227 

code checking. There were several checkpoints for each team to present their progress to the 228 

larger group. A tour of the NCBI data center was conducted, as well as several brief 229 

informational presentations. For example, Eugene Yaschenko of NCBI presented a group of 230 

application program interfaces (APIs) relating to the SRA Toolkit collectively known as the 231 

software development kit (26). The schedule was designed to give team members a common 232 

starting point, but allowed for modification as needed for each team.  233 

Delegation of roles/responsibilities 234 

One of the first tasks at the hackathon was for each team to assign roles/responsibilities to 235 

the team members. Most of the members were meeting each other for the first time, so it was a 236 

good way to learn about each other’s strengths. Roles were loosely distributed to cover areas 237 

including:  238 

• Systems administration: decided where data and tools went, implemented git for 239 

versioning, and dealt with any technical issues; 240 

• Metadata: tracked and recorded the information describing the contents of the datasets; 241 
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• Data Acquisition: located and downloaded appropriate publicly available datasets for 242 

analysis; 243 

• Data Normalization: prepared data from multiple datasets to work in a pipeline, such as 244 

making read counts comparable between collection sites.  245 

• Downstream Analysis:  assigned annotation or function to genomic predictions and 246 

looked at statistically meaningful overrepresentation 247 

• Documentation: prepared code and text summaries, including drafting this manuscript. 248 

Team Organization and Communication 249 

In order to facilitate communication among team members, Google mail groups were 250 

created for each team. Most team members did not know each other prior to the start of the 251 

hackathon, but some teams used their Google mail group to communicate prior to the event. 252 

Other collaboration tools included GitHub for program version control and Gitter, an instant 253 

messaging tool, for sharing links, especially while teams were looking for datasets. Documents 254 

were collaboratively edited using Google Docs. 255 

Data Sources and Computational Tools 256 

The basic workflow for the teams’ activities is demonstrated in Fig. 2. Scripting and data 257 

analysis took place in an Amazon Elastic Compute Cloud (EC2) where team players downloaded 258 

data from NCBI repositories and used open source bioinformatic tools. System administrators 259 

(SysAdmin) for each team were charged with code installation, compilation, storage and nodes 260 

expansion while the teams were developing the pipelines, which were pushed to GitHub. 261 

Figure 2. Hackathon teams workflow.  262 

DNA-seq Team 263 
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The DNA-seq team acquired high-throughput sequencing data for matched tumor-normal 264 

pairs from the NCBI SRA. The first three datasets found were unusable due to corrupted files, 265 

mismatched samples, or missing header information (see Discussion below for more details). 266 

The data used for designing the DNA-seq pipeline were found by searching the BioProject 267 

database for the terms “homo sapiens NOT cell line,” filtering for exome and SRA datasets, and 268 

rejecting the 81 datasets that matched the term “HapMap”.  269 

We designed our pipeline around a publicly available exome dataset submitted to SRA, 270 

BioProject PRJNA268172 (27). It consisted of exome sequences from four meningioma samples 271 

and a peripheral blood DNA sample from a 61-year-old female suffering from sporadic multiple 272 

meningiomas. Meningiomas are tumors originating from the membranous layers surrounding the 273 

central nervous system and are generally considered benign. Malignant meningiomas, while rare, 274 

are associated with a higher risk of local tumor recurrence and have a median survival time of 275 

less than two years (28). We were interested in finding and comparing somatic mutations, 276 

specifically SNPs, found in each of the meningioma tumor samples from the patient. 277 

We downloaded the relevant files by using the SRA Toolkit, and converted the SRA files 278 

to SAM and BAM files for further analysis. We found that the SAM files contained reads with 279 

sequence and quality scores of different length, which would halt the BAM file conversion, so 280 

we added a filter in our pipeline to remove such reads. Ideally, a module for trimming/masking 281 

and re-aligning the FASTQ file would have been the most appropriate; however, due to time 282 

restrictions we were unable to add such a module to our pipeline. Here, we assumed that the 283 

SRA submitted files were properly aligned and followed appropriate quality control steps. 284 

We used five different algorithms to call somatic variants. Four of these were in the Cake 285 

pipeline (29), namely Bambino (11), CaVEMan (30), SAMtools mpileup (31), and VarScan2 286 
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(12). To further increase our confidence in the called variants, we added the MuTect algorithm 287 

(13) to those used by Cake. Xu et al have compared somatic variation calling algorithms (14). 288 

A first level of filtering is provided in the pipeline for the resulted VCF files containing 289 

called somatic variants. This was accomplished using the Cake filtering module. We kept most 290 

of the default parameters, and those that were changed are explained in Table 1. Once the VCF 291 

files were filtered, they would be annotated using the ANNOVAR software, downloaded on 292 

January 5th, 2015 (32), with five different databases (RefGene, KnownGene, ClinVar, Cosmid 293 

and Cosmic), and the top 1% most deleterious CADD scores. 294 

Table 1: Cake filtering module parameters modified by the DNA-seq Team. 295 

Parameter Explanation Flag or 
Value Used 

EXONIC_FILTER Exome data is being used FALSE 

INDEL_FILTER Only SNPs are being considered FALSE 

COSMIC_ANNOTATION_FLAG Cosmic Annotations are added with 
ANNOVAR 

FALSE 

TUMOR_MIN_DEPTH As the coverage of these samples was too low, 
we set the threshold to a less stringent value. 

5 

NORMAL_MIN_DEPTH As the coverage of these samples was too low, 
we set the threshold to a less stringent value. 

5 

EMPTY_CONSEQ_FILTER VEP annotations were not used FALSE 

 296 

To compare the predicted somatic variations between two matched tumor-control 297 

samples, we created a module in our pipeline that used VCFtools to find shared and unique 298 

variations (33). Lastly, we combined these modules into a single pipeline using Bpipe (34), as 299 

well as a Unix Bash script. The full list of software used by the DNA-seq Team is included in 300 

Table 2. 301 
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Table 2: Tools and software used by the DNA-seq Team. 302 

Software/Tool URL 

SRA tool kit http://www.ncbi.nlm.nih.gov/sra 

Cake http://sourceforge.net/projects/cakesomatic/ 

MuTect https://github.com/broadinstitute/mutect/releases/tag/1.1.5 

somatic sniper http://gmt.genome.wustl.edu/packages/somatic-sniper/install.html 

varscan http://sourceforge.net/projects/varscan/ 

bambino https://cgwb.nci.nih.gov/goldenPath/bamview/documentation/index.html 

picard http://broadinstitute.github.io/picard/ 

Annovar http://www.openbioinformatics.org/cgi-bin/annovar_download.cgi 

SAMtools http://www.htslib.org/ 

bpipe http://github.com/ssadedin/bpipe 

Python https://www.python.org/ 

GNU Parallel http://ftp.gnu.org/gnu/parallel/ (35) 

VCFtools http://vcftools.sourceforge.net 

 303 

Epigenomics Team 304 

We gathered data with the intention of modeling transcription (mRNA-seq) based on 305 

DNA methylation (RRBS or Bisulfite-seq) and histone states (ChIP-seq). To simplify analysis, 306 

we focused on marks associated with enhancers and their regulatory status: H3K27ac, 307 

H3K4me1, and H3K4me3. Ultimately, we required that included tissues have matching 308 

H3K27ac, RNA-seq and DNA methylation data for preliminary modeling. Data files were drawn 309 

from human cell lines and tissues in the NIH Epigenomic Roadmap that fit our criteria (outlined 310 

in Table 3), from the site’s FTP mirror (36) using the rsync command with the -av option. All 311 

files were already aligned, and were required to have been generated using the hg19 reference 312 
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genome. Several files were identified that appeared to be re-aligned or uncorrected versions of 313 

other downloaded files, and were removed from the analysis. Tissues acceptable for analysis 314 

were identified by using the data matrix view on the Roadmap site, as well as searching for non-315 

partial datasets with the Data Grid view of the International Human Epigenome Consortium 316 

(IHEC) Data Portal (37). Samples were initially downloaded from ENCODE: Encyclopedia of 317 

DNA Elements (38), but were not included in initial analysis for reasons of uniformity and time. 318 

Table 3: NIH Epigenomic Roadmap Cell Lines/Tissues used by Epigenomics Team 319 

Cell/Tissue Type 

H1 Left_Ventricle 

IMR90 Pancreas 

CD34_mobilized_primary_cells Right_Atrium 

hESC-derived_CD184+_endoderm_cultured_cells Sigmoid_Colon 

HUES64_cell_line Spleen 

pancreatic_islets Penis_Foreskin_Fibroblast_Primary_Cells 

Skeletal_muscle Penis_Foreskin_Keratinocyte_Primary_Cells 

Adrenal_Gland Penis_Foreskin_Melanocyte_Primary_Cells 

Aorta Neurosphere_Cultured_Cells_Ganglionic_Eminence
_Derived 

Esophagus Brain_Hippocampus_Middle 

Gastric Ovary 

 320 

Metagenomics Team 321 

We designed six pipelines to compare different strategies for identifying and quantifying 322 

viral sequences among human genomic information. The pipelines are:  323 

1. Identify and quantify HERV sequences in assembled reads using blastn, 324 
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2. Identify and quantify HERV sequences in non-assembled reads from a human genome 325 

using search tools from NCBI’s SRA Toolkit, 326 

3. Identify and quantify HERV sequences in non-assembled reads from a human genome 327 

using a standard blastn search of reads in FASTA format. 328 

Pipelines 4-6 repeat pipelines 1-3 to identify all viral sequences within a sample from a human 329 

bacterial microbiome. 330 

For pipeline 1, whole genome sequence raw reads of human CEU NA12878 (39) were 331 

obtained from NCBI’s SRA database and converted from SRA to FASTQ file format using the 332 

fastq-dump command provided by the SRA Toolkit with default filter settings. The resulting 333 

FASTQ file was moved to an Amazon Elastic Compute Cloud (EC2) node and assembled into 334 

contigs with the ABySS assembler (40, 41). Contigs were used as queries for blastn against a 335 

database consisting of all Retroviridae RefSeq genomes that was constructed using the 336 

makeblastdb command. For pipeline 2, the SRA files containing raw reads for NA12878 were 337 

used directly as a database for a SRA blast (blastn_vdb) using the Retroviridae RefSeq genomes 338 

as query. For pipeline 3, the FASTA file of non-assembled reads from pipeline 1 was used as a 339 

query for a blastn search against the database of Retroviridae RefSeq genomes from pipeline 1. 340 

For pipelines 4 – 6, we used samples from the Human Microbiome Project (HMP) that 341 

had passed preliminary quality checks (42). The plan for pipeline 4 was the same as for pipeline 342 

1, except for using SOAPdenovo2 for the assembly of the microbiome FASTQ reads. For 343 

pipeline 5, rather than start with SRA files, raw Illumina WGS reads in FASTQ format first were 344 

converted to SRA format using the FASTQ loader tool latf-load within the SRA Toolkit. 345 

Pipeline 6 follows pipeline 3, but uses the microbiome FASTA as its query and the total viral 346 

RefSeq genome as its database. Full details about the data and tools we used are located in 347 
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Tables 4 and 5, respectively. 348 

Table 4. Data sources used by Metagenomics Team 349 

 350 

Data Source FTP Location 

refseq viral ftp://ftp.ncbi.nlm.nih.gov/refseq/release/viral 

1000 genomes contigs ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/ 

Human microbiome ftp://public-ftp.hmpdacc.org/HMASM/PGAs/ 

Human microbiome raw 
reads for 
right_retroauricular_crease 

ftp://public-
ftp.hmpdacc.org/Illumina/right_retroauricular_crease/SRS015381.t
ar.bz2 

Homo_sapiens_dna ftp://ftp.ensembl.org/pub/current_fasta/homo_sapiens/dna/Homo_s
apiens.GRCh38.dna.chromosome.10.fa.gz 

 351 

Table 5: Tools and software used by the Metagenomics Team. 352 

Software/Tool URL 

SRAtoolkit http://www.ncbi.nlm.nih.gov/Traces/sra/?view=software 

ABySS (from source, 
version 1.5.2) 

http://www.bcgsc.ca/platform/bioinfo/software/abyss/releases/1.5.2 

R statistical package http://www.r-project.org/ 

BLAST+ ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ 

 353 

RNA-seq Team 354 

The RNA-seq Team determined that the samples initially suggested by the team lead 355 

were not appropriate, so we looked for paired tumor/normal datasets from the NCBI Sequence 356 

Read Archive (SRA). One dataset was a deep high-throughput transcriptome sequencing (RNA-357 

seq) performed on three pairs of matched tumor and adjacent non-tumors (NT) tissues from HCC 358 
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patients of Chinese origin, accession PRJNA149267 (43, 44) Another identified dataset was a 359 

study to identify a prognostic signature in colorectal cancer (CRC) patients with diverse 360 

progression and heterogeneity of CRCs, accession PRJNA218851 (45, 46). Thirty-six paired 361 

samples from this study (18 tumor samples: GSM1228184-GSM1228201 and 18 matched 362 

normal samples GSM1228202-GSM1228219) were also determined to suitable. Additional tools 363 

used by the RNA-seq Team are listed in Table 6. 364 

Table 6: Tools and software used by the RNA-seq Team. 365 

Software/Tool URL 

HISAT http://www.ccb.jhu.edu/software/hisat/index.shtml 

Illumina iGenome http://support.illumina.com/sequencing/sequencing_software/igenome.html 

Bowtie http://bowtie-bio.sourceforge.net/index.shtml 

tophat http://ccb.jhu.edu/software/tophat/index.shtml 

Bambino https://cgwb.nci.nih.gov/goldenPath/bamview/documentation/index.html 

SAMtools http://SAMtools.sourceforge.net/ 

SRA Toolkit http://www.ncbi.nlm.nih.gov/Traces/sra/?view=software 

R http://www.r-project.org/ 

python https://www.python.org/ 

perl http://www.perl.org/ 

 366 

Results 367 

Evolution of the Projects 368 

DNA-seq team 369 

Our initial goal was to build a bioinformatics pipeline to predict somatic mutations using 370 
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several calling algorithms and integrate the mutations with RNA-seq data to find eQTLs. 371 

However, one of the main hurdles we encountered was finding an appropriate dataset that could 372 

be used to test and help create our pipeline. Initially, we found a neuroblastoma dataset 373 

submitted to SRA that included both the exome and RNA-seq data for matched samples. 374 

However, the dataset was unusable because of corrupted files. The majority of our time at the 375 

hackathon was spent on finding an appropriate dataset and debugging issues with the publicly 376 

available files. This hindered our efforts to create a fully functional pipeline to achieve our goals. 377 

Due to a lack of a working dataset of both DNA-seq and RNA-seq from the same individuals, we 378 

were unable to write a module within our pipeline to find eQTLs. However, we were able to 379 

design a pipeline that would find somatic mutations using five calling algorithms for given 380 

matched samples using five different algorithms, filter and annotate mutations, and find shared 381 

and unique mutations between two matched sample pairs (see Methods for more details). 382 

Epigenomics Team 383 

We initially considered different scenarios in which a lab might utilize our proposed 384 

pipeline based upon their available datasets and how investigators might want to model their 385 

datasets. For example, investigators might want to find a relationship between DNA methylation 386 

levels and histone enrichment. Given the variation in epigenetic data available as part of publicly 387 

available datasets, we recognized the need for flexibility about which data components would be 388 

required to model different epigenetic relationships. Time limitations prevented us from 389 

generating a workflow for every potential scenario (for example, RNA-seq and ChIP-seq, or 390 

ChIP-seq and DNA methylation but no RNA-seq). Instead, we considered common questions 391 

that might interest a general epigenetics laboratory. Investigators with epigenetic data often want 392 

to understand how this data correlates to gene expression. Thus, we decided to focus our model 393 
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on elucidating relationships between a given variable collection of epigenetic data and gene 394 

expression. A lab can use publicly available datasets to create a model with which to test their 395 

own epigenetic data. 396 

Metagenomics Team 397 

We considered several different options for metagenomics searches before the final six 398 

pipelines were settled. We spent significant time discussing the requirements for filtering or 399 

other QC steps on raw reads prior to running assembly (pipelines 1 and 4) or SRA blast steps. 400 

We also debated the relative merits of assembly for each task, eventually deciding to compare 401 

searches with and without assembly in different pipelines, which significantly added to our 402 

workload and may have contributed to the fact that only two pipelines were completed during the 403 

hackathon. With regard to assembly, our group considered using the established MG-RAST 404 

pipeline for a “brute force” blastn into raw reads (47), as well as using metAMOS (48), a 405 

comprehensive pipeline for metagenomics analysis for comparison. Eventually we decided to 406 

forego established pipelines, due to computational requirements within the timeframe of the 407 

hackathon and the desire to focus on developing novel workflows of our own. 408 

For pipelines 1-3 we initially planned to use human genomic information from 1000 409 

Genomes (24) but found the format (base genomic sequence with list of variants) more difficult 410 

to handle for our purposes than the human CEU NA12878 data that we eventually used. 411 

Likewise, for the microbiome task, we initially planned to apply our pipelines to several 412 

microbiome sample types, but eventually decided to focus on a skin microbiome, since skin 413 

samples tend to contain abundant viruses and multiple datasets may be available due to ease of 414 

sampling. 415 
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RNA-seq Team 416 

Our original goals were very ambitious, especially the task of determining RNA editing 417 

without DNA controls. We were interested in looking at the variants in paired cancer samples, 418 

and spent a fair amount of time to find an appropriate dataset. We decided to align the samples 419 

using HISAT and determine the types and counts of variants (particularly A-I transitions) that 420 

may suggest RNA editing. We also wanted to determine variants in genes and then possibly 421 

correlate the genes to Gene Ontology. 422 

We discussed a variety of aligners, such as STAR (49) and HISAT (50), which are very 423 

fast. Information about the recently released HISAT program was shared via the Google Group 424 

prior to the start of the hackathon so everyone had a chance to review this program. We selected 425 

HISAT because of its speed, a decision partly driven by the time constraints of the hackathon. 426 

We encountered some technical difficulties processing these in HISAT, so we ran the dataset 427 

with the 3 pairs of tumor/normal using tophat and bowtie so that we had some results for 428 

downstream processing, while another team member continued to develop the HISAT portion of 429 

the pipeline. 430 

We selected bambino as our variant caller based on team members’ past successes with 431 

using this tool. A collection of Python and Perl scripts was written to filter out unmapped and 432 

low-quality reads and, more importantly, multi-mapped reads that did not map to a unique locus 433 

within the genome, since bambino would call each of these multiple alignments separately. The 434 

BAMs also had to be sorted by chromosome to prepare input for bambino. Bambino was then 435 

used to generate a variant call table and a Perl script was created to filter for coverage on both 436 

strands and give a sparser table for downstream analysis. Another program counted the variant 437 

info. We then applied the Fisher’s exact test to the data using R. 438 
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We discussed creating a command line to get gene ontologies of the set of genes, but 439 

were concerned about users keeping up-to-date versions of the GO database. Gene ontology 440 

could be determined by using web sites such as PANTHER (51) or DAVID (52, 53). 441 

Technical Problems 442 

DNA-seq Team 443 

We found the SRA website challenging to use for locating data, and the quality of 444 

available datasets was inconsistent. Although many data sources validate user-submitted files, a 445 

number of files that had been improperly validated and thus were not usable. Some files were 446 

corrupted and could not be used, such as those in BioProject PRJNA76777 (54). Our pipeline 447 

needed datasets that had a paired tumor-normal sample from the same patient. For some datasets, 448 

paired samples were not available, and other datasets were marked as being paired, when in fact 449 

they were not, such as BioProject PRJNA217947 (55). In addition, we observed that multiple 450 

datasets in the SRA database were missing the header information required to create BAM files 451 

used by downstream analysis tools, such as BioProject PRJDB1903 (56). In other cases, SRA 452 

data were found to be malformed, and caused certain tools to crash. Specifically, files from 453 

BioProject PRJNA268172 (27) contained reads with differing length sequence and quality scores 454 

(e.g. 34 bases of sequences, 70 bases of quality information). Files with such mismatches cannot 455 

be used in SAMtools to convert to BAM files, as a difference in these field lengths is 456 

inconsistent with the SAM format specification (57). 457 

We also encountered problems with upstream bioinformatics code quality, such as poor 458 

or incorrect documentation. The tools we employed had a variety of installation methods, and 459 

few were available for easy installation through a package manager. For example, core software, 460 

such as R version 3, was not available as a package from the operating system vendor. Installing 461 
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from a third-party repository is not complex, but may be daunting to someone inexperienced in 462 

systems administration. 463 

Epigenomics Team 464 

When searching for epigenetic datasets that belong to a given cell type, we found that in 465 

many cases all of the necessary data were not available in one centralized location. Thus, we had 466 

to search through multiple websites and databases to find enough epigenetic data for a given cell 467 

type we wanted to model. In some cases, the metadata for a given file was either corrupt or 468 

unavailable. In other cases, the assembly used to align reads for a given set of files was not 469 

clearly indicated, so these files were discarded. When dealing with wiggle (wig) and bigWig 470 

files, sometimes the format of the file was inconsistent and needed to be edited on the fly. 471 

Metagenomics Team 472 

Technical difficulties generally were resolved expediently, but still hindered timely 473 

analysis within the hackathon context. For example, some Amazon EC2 nodes would suddenly 474 

become completely unresponsive for unexplained reasons, requiring that we shut down and re-475 

initiate the nodes. By the end of the hackathon, results were only available from the pipelines 476 

that used the SRA BLAST, in part because the SRA BLAST took about an order of magnitude 477 

less computing time than the standard blast program. In both cases, many Amazon compute 478 

nodes were available, but only the SRA BLAST was able to handle the large volume of human 479 

genome and human microbiome read data efficiently. In contrast, a huge amount of the 480 

processing power available to the standard blast program (several tens of nodes) was simply 481 

wasted while the program waited for data. 482 

RNA-seq Team 483 
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It is important to recognize the difficulties of variant calling, especially with RNA-seq 484 

data. First, bias impacts genes expressed at lower levels. As gene expression itself varies from 485 

sample to sample, depth of coverage for any particular variant may differ. For instance, a variant 486 

in a sample with high gene expression would be called without difficulties, but may not be called 487 

in a sample that also carries the variant but whose expression is too low to call with confidence. 488 

Another source of variance lies within the heterogeneity of the tissue sample. Most tissue 489 

samples harbor multiple cell types, and not all of these cells will carry a somatic mutation. This 490 

problem is encountered in both DNA-seq and RNA-seq data, but results can be difficult to 491 

interpret on a per-variant basis when the fluctuation in overall coverage in gene expression is 492 

also considered. Thus, we decided to deal with overall global effects rather than selecting 493 

particular singular changes.  494 

Project Results 495 

DNA-seq Team 496 

The test dataset was downloaded from SRA website. The SRA Toolkit utility called 497 

prefetch allows the user to download SRA data files, but we found it initially troublesome to use 498 

due to configuration and storage issues; by default, prefetch stores all files in user home 499 

directories, which are often limited in storage capacity. We therefore wrote a faster web-scraper 500 

script to download the files from the SRA website. Given our time limitations, we had to rely on 501 

the user-submitted aligned and trimmed files, but we recommend that files submitted to the SRA 502 

should be validated prior to upload. 503 

Our pipeline was designed to find somatic mutations using five different algorithms, filter 504 

and annotate the mutations, and compare the predicted mutations between matched tumor-505 

normal samples. However, due to time constraints and initial difficulties with finding an 506 
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appropriate data set and software installation, we were unable to complete our analysis. A 507 

diagram of the final DNA-seq Team pipeline design is presented in Fig 3. 508 

Figure 3. DNA-seq Team pipeline. 509 

Epigenomics Team 510 

We sought to rectify previously described inconsistencies in analyses by developing a 511 

more efficient, novel pipeline. Our pipeline uses RNA-seq counts, ChIP-seq peaks, and DNA 512 

methylation data in order to generate a model to predict relationships between gene expression 513 

and epigenetic data. These models can then be used to predict changes in gene expression with 514 

respect to changes in these epigenetic signals. Publicly available datasets can be utilized to 515 

generate a model, which investigators can then use to predict the state of the chromatin based on 516 

their own epigenetic data. The pipeline uses a combination of Python, R, and command line-517 

based tools. 518 

For each gene in a given cell type, epigenetic marks positioned locally to the gene are 519 

considered, as are distal enhancer elements that may also play in a role in that gene’s expression. 520 

To calculate the local epigenetic effects on transcription, an arbitrary distance on the 5’ and 3’ 521 

ends of a gene is binned into regions and the scores of epigenetic marks that reside in each of 522 

these bins are collected. The distal effect of transcription on a given gene is given by peak scores 523 

of enhancer elements that are at most one megabase (Mb) upstream or downstream of the gene.  524 

The scores for each epigenetic mark and enhancer for a given gene are standardized and 525 

stored in a data matrix, where each row corresponds to a given gene for a given sample condition 526 

or cell type. Transcript gene counts generated from RNA-seq data are also stored. This pipeline 527 

generates a unique model for each gene in a given cell type by considering the gene count values 528 

as Y-values and each of the epigenetic scores as X-values. Corresponding coefficients are 529 
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calculated for each X-value. Investigators can use these coefficients to input a new set of 530 

epigenetic data and receive a testable hypothesis of predicted levels of expression for each gene 531 

based on the new epigenetic data. Over time, different datasets can be used to train a given 532 

model to make it more reliable. A diagram of the final DNA-seq Team pipeline is presented in 533 

Fig 4. 534 

Figure 4. Epigenomics Team pipeline. 535 

Metagenomics Team 536 

Although the goals were similar across all six of our pipelines, differences in file formats 537 

and analysis approaches between the pipelines required the team to split their efforts rather than 538 

work together on a single pipeline. One result of this fragmentation was some lack of consistency 539 

in analytical methods (for example, choice of query versus database) between the pipelines. 540 

Moreover, due to time limitations of the hackathon only one assembly was completed: the 541 

ABySS assembly of the NA12878 human genome. Likewise, while we completed a versatile 542 

script for conversion of FASTQ files to SRA format with the latf-load tool, time allowed only for 543 

its demonstration on a single human microbiome sample.  544 

Initially our plan included comparison of ERV sequence abundances between NA12878 545 

genomes sequenced by several different sequencing technologies. Likewise, we initially planned 546 

to compare viral sequence abundances between several different microbiome sample types. Due 547 

to the complexity of these tasks, we decided to demonstrate our pipelines with a single sample 548 

type for each application: Illumina HiSeq 2000 reads from NA12878 and a single sample from 549 

the right retroauricular crease for the HMP application. Of the six pipelines that were planned 550 

and designed, we built four (pipelines 1-3 and 5). 551 

We found that the most successful approach for searching a human genome for 552 
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endogenous retroviruses was to use reads converted to SRA format (pipeline 2) via latf-load. The 553 

blastn in pipeline 2 was completed in 50-60 minutes. For pipeline 1, while an assembly of 554 

NA12878 was completed using ABySS within the time constraints of the hackathon, the blastn 555 

search using the assembled contigs to query the ERV database required excessive computational 556 

time; after more than 4 hours using 30 cores, the search still had not finished. In contrast, the 557 

blastn for pipeline 3 finished in 5 hours. Part of the increased time for the blastn search in 558 

pipeline 3 may have been due to alteration of the FASTA database by merging of forward and 559 

reverse paired-ends. 560 

Pipeline 5 includes a set of scripts that we developed to create a versatile pipeline for 561 

searching a human microbiome sample for all viruses. These scripts may be adjusted to conduct 562 

BLAST searches using other types of SRA files. A shell script downloads the relevant datasets 563 

for the assembled and non-assembled sequences from HMP as well as for total viral sequences 564 

from RefSeq. Scripts and a wrapper, written in R, were developed to convert FASTQ data to 565 

SRA format with the latf-loader tool, convert the loaded data to .kar format, run a BLAST search 566 

with the blast_vdb command, and parse the data into a viral-by-sample count matrix. The 567 

resulting sparse matrix may be normalized and handled in a way similar to previously published 568 

methods for sparse matrices of high-throughput 16S survey data (21). Additional available code 569 

executes blastn on the assembled contigs. A diagram of the final Metagenomics Team pipeline is 570 

presented in Fig 5. 571 

Figure 5: Metagenomics Team pipeline. 572 

RNA-seq Team 573 

We developed and ran a Python script that reads a user-defined manifest file to extract 574 

the read sequence information from the SRA files, stores the data in FASTQ format, and 575 
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launches the jobs to align the sequences using HISAT. Due to technical difficulties and time 576 

constraints, we decided to manually download and process a smaller set of 3 pairs of 577 

tumor/normal samples, as opposed to the set of 18 pairs we had initially considered. We aligned 578 

the sequences using HISAT to prepare the data for use in subsequent parts of the pipeline. The 579 

aligned SAM files were filtered to remove the unmapped, low-quality or ambiguous reads, such 580 

as reads that map at multiple different locations.  581 

The filtered data were run through bambino to create a variant call table in which each 582 

line contains a call variant at a particular location within the genome and the reference base at 583 

the same location. We counted nucleotide change variants in the tumor and normal samples and 584 

ran a Fisher’s exact statistical test using R to identify potential RNA editing. We found no 585 

significant global changes of overrepresentation, but it is important to recognize the limitations 586 

of our small sample size and our focus on specific changes.  RNA editing most likely only 587 

comprises a small number of A to G variants, and we would not be able to identify these changes 588 

by considering global total numbers as opposed to looking at each site’s overall counts 589 

individually. This limitation does not affect overrepresentation in a global manner, but a small 590 

set of specific local changes might not be identified with this study design. 591 

Before the end of the hackathon, we were able to use the initial Python script to 592 

download all 36 samples and launch the alignment tool jobs, but were able to complete fewer 593 

than 10 samples given the amount of time required to finish debugging. However, when 594 

completed, this automation script will greatly simplify the process of accessing and launching of 595 

alignment jobs for RNA-seq datasets. A diagram of the final RNA-seq Team pipeline is 596 

presented in Fig 6. 597 

Figure 6: RNA-seq Team pipeline. 598 
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Discussion and Conclusions 599 

Feedback from hackathon participants was generally positive, and the enthusiasm that 600 

participants felt was evident during the event. Participants voluntarily stayed past the planned 601 

ending time each night, and many participants did not even want to take a break when lunch 602 

arrived. Even more than a week after the hacakathon had ended, teams continued to 603 

communicate about and work on the problems, as well as this paper.  604 

Every participant in the hackathon contributed not only to the research but also to 605 

drafting the paper. Each group appointed a lead writer, who worked closely with the librarian 606 

editor and coordinated with the other members of their team. Because each of the team members 607 

worked on different parts of the project, every individual wrote at least a portion of the sections 608 

of the paper covering their work. The use of Google Docs allowed multiple authors to work on 609 

the paper simultaneously and all changes to be reflected in real time. Google Docs’ comment 610 

functionality also facilitated communication among authors. Once the writing was considered 611 

complete, the librarian editor organized and edited the draft in order to create a coherent and 612 

consistent paper, then returned this final draft to all authors for their approval. Though 613 

coordinating with so many authors is challenging, here we demonstrated that it is possible for a 614 

large group of individuals to contribute substantively to an article. 615 

Participants reported that they appreciated having structured roles within the teams. Team 616 

leads were also important for the success of the team, though their presence was not necessary 617 

for the entire hackathon. For example, inclement weather on the second day prevented one of the 618 

team leads from attending, but the team still made progress on pipeline production. Given that 619 

members of each team came from diverse backgrounds with experience working with a 620 

multitude of different data types and resources, the hackathon promoted innovation through team 621 
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science and consensus-building. For example, it was essential that each pipeline utilize an 622 

appropriate test dataset, but many teams had difficulty with data that were located across 623 

multiple repositories or could not be used due to errors in metadata or formatting. Thus, teams 624 

had to brainstorm other datasets to use or create new ways to process the data. Because each 625 

problem encompassed technical challenges inherent in many biological fields, teams needed to 626 

consolidate ideas from each member. This allowed teams to not only transcend the difficult data 627 

landscape, but fostered a strong learning environment. 628 

Although the ultimate goal of the hackathon was to solve biological problems, 629 

participants emphasized that they appreciated this unique opportunity for career development 630 

and networking. Participants with strong backgrounds in computer science effectively mentored 631 

those who were less computationally savvy, and those with strong biology backgrounds were 632 

able to share insights with those who lacked this expertise. Additionally, the hackathon brought 633 

together individuals from different research communities who otherwise may have never met and 634 

created the potential for establishing new collaborations. In particular, participants early in their 635 

careers were able to meet prominent researchers in various fields and receive helpful training 636 

advice from the more senior participants. We anticipate that the participants will share their 637 

experiences upon returning to their respective institutes.  638 

The organizers learned some valuable lessons from this event. Surprisingly, although the 639 

organizers had kept the goals somewhat loosely structured, participants generally asked for more 640 

structure, particularly concerning datasets. In the future, the organizers intend to prepare videos 641 

for team members concerning the scientific directions of the projects prior to the event. Other 642 

informational materials distributed in advance of the event could help participants learn how to 643 

complete tasks that took time away from pipeline development, such as how to locate and 644 
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download datasets. Specific attention will be paid to using the SRA SDK to process small parts 645 

of many genomes simultaneously. One team was unable to complete their pipeline, and other 646 

teams were affected by time constraints, so moving some of the preparatory work of locating and 647 

downloading datasets would help ensure that the teams had adequate time for more substantive 648 

work on the pipelines. 649 

From an institutional perspective, the hackathon was also helpful as a means to test NCBI 650 

public data repositories. Over the course of this hackathon, several technical issues with respect 651 

to data storage, metadata and corruptions were illuminated. These issues as well as constructive 652 

feedback about how NCBI should host data were discussed directly with NCBI Director David 653 

Lipman. 654 

  Finally, we hope that this hackathon will help to stimulate the community to continue to 655 

improve these pipelines. We chose these topics and questions because they are of interest to 656 

many biologists and introductory bioinformaticians. Because the data is publicly available, 657 

investigators should be able to access the datasets from NCBI in order to replicate the work done 658 

in creating these pipelines. We encourage members of the community to extend, expand and alter 659 

these pipelines, which are licensed under a Creative Commons Attribution License (CC-BY). We 660 

hope that the community will continue working with these pipelines to suit their needs and repost 661 

them as they see fit.  662 
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