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Abstract 24 

Recent technological advances have enabled spatially resolved measurements of expression 25 

profiles for hundreds to thousands of genes in fixed tissues at single-cell resolution. However, scalable 26 

computational analysis methods able to take into consideration the inherent 3D spatial organization of cell 27 

types and non-uniform cellular densities within tissues are still lacking. To address this, we developed 28 

MERINGUE, a computational framework based on spatial auto-correlation and cross-correlation analysis 29 

to identify genes with spatially heterogeneous expression patterns, infer putative cell-cell communication, 30 

and perform spatially informed cell clustering in 2D and 3D in a density-agnostic manner using spatially 31 

resolved transcriptomics data. We applied MERINGUE to a variety of spatially resolved transcriptomics 32 

datasets including multiplexed error-robust fluorescence in situ hybridization (MERFISH), spatial 33 

transcriptomics, Slide-Seq, and aligned in situ hybridization (ISH) data. We anticipate that such statistical 34 

analysis of spatially resolved transcriptomics data will facilitate our understanding of the interplay 35 

between cell state and spatial organization in tissue development and disease.  36 

 37 

  38 
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Introduction 39 

Characterization of the spatial context of cells and their cellular states is essential to 40 

understanding the connection between tissue organization and function, particularly in complex organs 41 

such as the mammalian brain. Furthermore, spatial context plays an important role in development and 42 

organ formation in multicellular organisms, as well as in aberrant processes such as cancer (Crosetto et al. 43 

2015). While advances in single-cell sequencing technologies can be used to discover transcriptionally 44 

distinct subpopulations of cells in an unbiased manner, current protocols require dissociating cells from 45 

tissue, thereby losing valuable spatial context (Crosetto et al. 2015). Thus, how these subpopulations of 46 

cells are organized in space and how they may interact with each other remains an open question in many 47 

systems.  48 

To preserve informative spatial context, recent advances in imaging-based approaches have 49 

enabled in situ, spatially resolved transcriptomic profiling with single-cell resolution (Zhuang 2021). In 50 

addition, approaches based on spatially resolved RNA capture followed by sequencing, such as spatial 51 

transcriptomics and Slide-seq provide spatially resolved, untargeted transcriptomic profiling at the pixel 52 

level, with pixel size of 10-100µm (Larsson et al. 2021). Such high throughput data generation, both in 53 

terms of the number of genes and number of cells assayed, demands scalable computational methods that 54 

take advantage of this new spatial dimension to efficiently identify statistically significant spatial patterns 55 

and relationships. In addition, as these methods are applied to increasingly complex tissues, statistical 56 

analyses must be able to accommodate the non-uniform cell density induced by biological factors, such as 57 

the presence of multiple, often spatially organized, cell-types inherent to tissues, as well as technical 58 

factors, such as distortions from tissue sectioning. 59 

Three statistical methods, SpatialDE, Trendsceek, and SPARK have previously been developed to 60 

identify spatial gene expression heterogeneity, defined as an uneven, aggregated or patterned, spatial 61 

distribution of gene expression magnitudes (Svensson et al. 2018; Edsgärd et al. 2018; Sun et al. 2020). 62 

Briefly, SpatialDE identifies spatial gene expression heterogeneity by decomposing a gene’s expression 63 

variance into a spatial and a non-spatial component using a spatial variance term that incorporates the 64 
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pairwise distances between cells. Trendsceek characterizes spatial gene expression heterogeneity by 65 

testing a gene’s expression for dependence with the pairwise distances between cells. SPARK identifies 66 

spatial gene expression heterogeneity that best fits the observed gene expression trends using multiple 67 

linear spatial models based on different Gaussian and periodic kernel functions that incorporate distances 68 

between cells. Thus, each method directly incorporates information regarding cell distances, which could 69 

present a challenge for analyses within tissues where cells are distributed with non-uniform densities. For 70 

example, where local cell density is higher and the distance between cells are smaller, randomly varying 71 

gene expression may give rise to apparent spatial aggregation due to cellular aggregation (Supplemental 72 

Fig. S1A). Likewise, spatial variation in cellular density could also potentially mask spatial variation in 73 

gene expression (Supplemental Fig. S1B). It is, however, important to identify variations in gene 74 

expression magnitudes across cells that do not arise from variations in cellular density. Alternative 75 

approaches such as SpaOTsc can accommodate non-uniform cellular densities if provided with geodesic 76 

distances (Cang and Nie 2020). Briefly, using such density agnostic geodesic distances relating cells in 77 

space, SpaOTsc uses optimal transport to estimate how much information about each gene’s expression 78 

magnitude can be provided by another gene’s expression magnitude in order to identify groups of genes 79 

with similar spatial patterning. However, this approach does not provide a statistical framework to 80 

distinguish between significantly spatially heterogeneous genes versus non-significant or non-spatially 81 

heterogeneous genes. Furthermore, cells in tissues inherently exist in a 3-dimensional context, yet 82 

computational approaches capable of taking into consideration z-axis information, often at differing 83 

length-scales such as multiple non-contiguous tissue sections, have yet to be demonstrated. Here, we 84 

developed MERINGUE, a density-agnostic method for identifying spatial gene expression heterogeneity 85 

using spatial auto-correlation and cross-correlation analyses. Using a variety of spatially resolved 86 

transcriptomics datasets, we demonstrate that MERINGUE is able to identify biologically relevant spatial 87 

gene expression patterns in both 2D and 3D in a manner that is independent of cell density. 88 

 89 

Results 90 
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 91 

Overview of MERINGUE 92 

Given a set of spatial positions such as those corresponding to single cells, MERINGUE first 93 

represents these cells as neighborhoods using Voronoi tessellation (Fig. 1A). In Voronoi tessellation, 94 

planes are partitioned into neighborhoods where a neighborhood for a cell consists of all points closer to 95 

that cell than any other (Okabe et al. 1992). Cells are then considered adjacent if their neighborhoods 96 

share an edge. For biological interpretability, we further require adjacent cells to be within a certain 97 

spatial distance in space in order to accommodate realistic length scales of cellular interactions. This 98 

neighborhood representation of cells accommodates varying neighborhood sizes and distances between 99 

cells and thus can characterize cell-types and tissues with non-uniform densities. We also find that such 100 

neighborhood adjacency relationships to be more stable than k-nearest-neighbor or k-mutual-nearest-101 

neighbor relationships since such relationships require k to be specified beforehand and a single k value 102 

may not be appropriate for all densities and regions within a spatially resolved dataset (Supplemental Fig. 103 

S2A). MERINGUE encodes these adjacency relationships using a binary adjacency weight matrix W, 104 

with a weight of 1 if two datasets are adjacent and 0 otherwise (Fig. 1A). Such adjacency relationships are 105 

not restricted to 2D and thus can accommodate 3D information, such as from imaging of multiple slices 106 

of the same tissue or 3D volumetric imaging of a tissue block, if available (Wang et al. 2018; Lee et al. 107 

2015).  108 

Next, to identify genes with spatially heterogeneous expression, given a matrix of normalized 109 

gene expression magnitudes for the same set of spatially resolved cells, MERINGUE uses this adjacency 110 

weight matrix W in calculating Moran’s I, a global measure of spatial auto-correlation popular in geo-111 

spatial analysis, for each gene’s expression magnitude ��� across the population of � cells (Moran 1950): 112 

����	�
 �  �
∑ ∑ ���

�
�

�
�

∑ ∑ ������ � ����� � ���
�

�
� ∑ ��� � ����

�

 

When a gene’s expression magnitude ��� between spatially adjacent cells ����  1� are positively 113 

correlated, Moran’s I will be positive (Fig. 1B), indicative of spatial gene expression heterogeneity. 114 
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Moran’s I has a closed form, allowing p-values to be derived without reliance on computationally 115 

intensive permutations (Supplemental Fig. S2B, (Moran 1950)).  116 

To further characterize the scale of significant spatial gene expression heterogeneity, using the 117 

same matrix of normalized gene expression magnitudes and adjacency weight matrix W, MERINGUE 118 

calculates a Local Indicators of Spatial Association (LISA) for each gene (Anselin 2010): 119 

�����  � ��� � �� ∑ ���
�
� ��� � ��

∑ ��� � ����
�

 

When a gene’s expression values ��� in a given cell ��� is positively correlated with that cell’s spatially 120 

adjacent neighbors, the cell’s LISA for the given gene will be highly positive. Again, LISA has a closed 121 

form, allowing p-values to be derived quickly. As such, MERINGUE defines the percent of cells with 122 

statistically significant LISAs as the percent of cells driving a spatially heterogeneous gene expression 123 

pattern. This use of LISA guards against the identification of spatially heterogeneous genes driven by 124 

small hotspots or outliers. Simulations suggest that false positives may be effectively eliminated by 125 

restricting to spatial heterogeneity driven by more than 5% of cells (Supplemental Fig. S2C).  126 

Finally, to summarize genes into primary spatial patterns, MERINGUE calculates a spatial cross-127 

correlation index between all pairs of genes identified with significant spatially heterogeneous expression 128 

driven by a sufficient percent of cells: 129 

���  �
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�

 

When one gene’s expression magnitude ��� in a given cell ��� is positively correlated with another gene’s 130 

expression magnitude ��� in the cell’s spatially adjacent neighbors ���, the ��� for this gene pair will be 131 

positive. MERINGUE computes this spatial cross-correlation index for all gene pairs to derive a spatial 132 

cross-correlation matrix that is then used for hierarchical clustering and dynamic tree cutting to group 133 

these genes into primary spatial patterns (Fig. 1C, (Langfelder et al. 2008)).  134 

In addition, MERINGUE further builds on this spatial cross-correlation index to identify spatially 135 

cross-correlated gene expression patterns that may be indicative of cell-cell communication. In particular, 136 

 Cold Spring Harbor Laboratory Press on September 20, 2021 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 7

communicating cell-types may express higher levels of particular ligand genes while being spatially 137 

adjacent to cells that express higher levels of corresponding receptor genes or vice versa. Thus, to identify 138 

such gene expression patterns that may be indicative of putative cell-cell communication, MERINGUE 139 

constructs an adjacency weight matrix W to only include adjacency relationships between cell-types and 140 

calculates the spatial cross-correlation statistics for known receptor and ligand genes (Ramilowski et al. 141 

2015a). In this manner, when a receptor gene’s expression magnitude ��� in a given cell ��� of cell-type 142 

A is positively correlated with the corresponding ligand gene’s expression magnitude ��� in cells of cell-143 

type B among the cell’s spatially adjacent neighbors ���, the inter-cell-type ��� for this cell-type pair will 144 

be highly positive. Statistical significance can then be assessed by permutation testing (Fig. 1D).  145 

 146 

MERINGUE identifies genes with spatially heterogeneous expression patterns and is robust to 147 

changes in cellular densities  148 

As a proof of principle, we first applied MERINGUE to Spatial Transcriptomics (ST) data of the 149 

mouse main olfactory bulb (MOB) and Slide-Seq data of the mouse cerebellum (Ståhl et al. 2016; 150 

Rodriques et al. 2019). Briefly, for ST and Slide-seq, RNAs from tissue sections are captured onto an 151 

array of DNA barcoded spots or a monolayer of DNA barcoded beads , respectively. By resolving the 152 

DNA barcodes, both approaches enable matching of detected RNA abundances with their original 153 

spatially resolved spots or beads, resulting in RNA-sequencing measurements with uniformly gridded 154 

two-dimensional positional information. To validate MERINGUE, we expected that identified spatially 155 

heterogeneous genes in the MOB should mark transcriptionally distinct and spatially organized cell layers 156 

or combinations of cell layers (Fig. 2A, Supplemental Fig. S3A). Indeed, when we applied MERINGUE 157 

to analyze 7365 genes among 260 spots, of the 834 identified as significantly spatially heterogeneous 158 

genes (adjusted p-value < 0.05) driven by more than 5% of spots (Fig. 2B, Supplemental Fig. S3B, 159 

Supplemental Table 1), 90% (754/834) overlapped with genes that are significantly differentially 160 

expressed genes across cell layers (adjusted p-value < 0.05) as identified from ANOVA testing. 161 

Furthermore, these 834 spatially heterogeneous genes can be further partitioned into 5 primary spatial 162 
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patterns that correspond to cell layers and combinations of cell layers as expected (Fig. 2C, Supplemental 163 

Fig. S3C). One well-characterized aspect of spatial organization in the MOB involves the convergence of 164 

axonal projections from olfactory receptor neurons expressing a given olfactory receptor (Olfr) into 165 

glomerular neuropils at fixed locations in the glomerular cell layer of the olfactory bulb (Ressler et al. 166 

1994; Vassar et al. 1994; Mombaerts et al. 1996). Therefore, as an additional validation, we evaluated 167 

whether Olfr genes were spatially heterogeneous in a pattern that corresponds to the glomerular and 168 

surrounding cell layers. While individual Olfr genes are very lowly expressed such that detection was 169 

generally limited to only a few copies in a few spots (Supplemental Fig. S3D), rendering assessment of 170 

spatial heterogeneity for individual Olfr genes infeasible, by aggregating the expression of all detected 171 

Olfr genes, we validate that MERINGUE was able identify significant spatial heterogeneity (p-value = 172 

0.0000283). The spatial expression pattern further corresponded approximately to the glomerular and 173 

surrounding cell layer as expected (Supplemental Fig. S3E). For SlideSeq data of the mouse cerebellum, 174 

we applied MERINGUE to analyze 9762 genes among 1589 beads previously annotated to correspond to 175 

the Purkinje layer (Supplemental Fig. S4A). We validate that Aldoc (zebrin II) is identified as among the 176 

most significantly spatially heterogeneous genes (adjusted p-value < 0.05, > 5% beads, Supplemental 177 

Table 2), consistent with observations from the original publications (Rodriques et al. 2019).  178 

We next compared MERINGUE to previously published computational methods for analyzing 179 

spatially resolved transcriptomics data, SpatialDE and SPARK (Svensson et al. 2018; Sun et al. 2020). 180 

We applied each method to analyze 7365 genes among 260 spots in the MOB to identify spatially 181 

heterogeneous genes (see Supplemental Methods). We found the resulting significance of spatial 182 

heterogeneity in terms of -log10(adjusted p-value) to be highly correlated across genes between all tested 183 

computational methods (R=0.914 between MERINGUE and SpatialDE, R=0.898 between MERINGUE 184 

and SPARK, Supplemental Fig. S5A-B). The resulting set of significantly spatially heterogeneous genes 185 

identified by each tested computational method using a common significance threshold (adjusted p-value 186 

< 0.05) were also highly overlapping (Supplemental Fig. S5C). We further evaluated the computational 187 

efficiency of each method in terms of runtime and memory usage as a function of the number of genes 188 
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and the number of cells in the dataset (see Supplemental Methods). We found that MERINGUE achieves 189 

improved computational efficiency compared to previously published computational methods 190 

(Supplemental Fig. S5D-E). Thus, MERINGUE is capable of identifying spatially heterogeneous genes 191 

consistent with previously published approaches in scalable manner.  192 

We developed MERINGUE to accommodate the non-uniform cellular densities inherent to 193 

tissues. Thus, we reasoned that changes in cellular densities should not substantially impact 194 

MERINGUE’s ability to identify spatially heterogeneous genes. To assess MERINGUE’s robustness to 195 

spatial variations in cellular densities, we artificially induced non-uniformity in the spatial distribution of 196 

ST spots by distorting their positional coordinates (see Supplemental Methods, Supplemental Fig. S6A). 197 

Due to its use of a distance-agnostic binary weight matrix, MERINGUE’s resulting significance of spatial 198 

heterogeneity across genes was highly correlated between the uniform and non-uniform case as expected 199 

(Spearman ρ = 0.862, Supplemental Fig. S6B). Likewise, while MERINGUE was able to identify 834 200 

significantly spatially heterogeneous genes (adjusted p-value < 0.05, > 5% of spots) in the uniform 201 

density case, 544 (65%) of these genes were recovered in the non-uniform density case with the same 202 

adjusted p-value and spot percentage thresholds. The discrepancies between the uniform and non-uniform 203 

cases can be largely attributed to changes in the binary weight matrix (Supplemental Fig. S6C). Because 204 

SpatialDE and SPARK incorporate Euclidean distances between cells in their evaluation of spatial 205 

patterns, we reasoned that spatial variations in cellular density would impact their ability to identify 206 

spatially heterogeneous genes. We thus applied the same uniform and artificially induced non-uniform 207 

case comparison. As expected, the resulting significance of spatial heterogeneity across genes were less 208 

well correlated between the uniform and non-uniform density case for both SpatialDE (Spearman ρ = 209 

0.427) and SPARK (Spearman ρ = 0.418) (Supplemental Fig. S6D). Likewise, while SpatialDE was able 210 

to identify 360 significantly (adjusted p-value < 0.05) spatially heterogeneous genes in the uniform 211 

density case, only 56 (16%) of these genes were recovered in the non-uniform case with the same 212 

adjusted p-value threshold. Similarly, while SPARK was able to identify 664 significantly (adjusted 213 
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combined p-value < 0.05) spatially heterogeneous genes in the uniform case, only 66 (10%) of these 214 

genes were recovered in the non-uniform case with the same adjusted p-value threshold.  215 

 216 

MERINGUE integrates 3D and multi-layer tissue information  217 

While spatially resolved transcriptomics measurements generally provide positional information 218 

in the imaging (x-y) plane, z-direction information can be obtained through optically scanning through 219 

imaging planes or sequential tissue sections. To demonstrate integration of z-direction information, we 220 

first applied MERINGUE to 3D in situ hybridization (ISH) data, aligned across multiple stage 6 221 

Drosophila melanogaster embryos for 84 selected marker genes (Karaiskos et al. 2017; Fowlkes et al. 222 

2008) (Fig. 2D, see Supplemental Methods). The role of spatial patterning in shaping cellular identities 223 

has been well established in the Drosophila melanogaster embryo and as such, the 84 marker genes were 224 

previously chosen for their known spatial patterning. Indeed, we validate that all 84 genes are identified 225 

by MERINGUE as significantly spatially heterogeneous (adjusted p-value < 0.05, > 5% spots) as 226 

expected. We further validated that these genes could be grouped by MERINGUE into 14 primary spatial 227 

patterns that correspond to known regionally confined developmental fates and layers of the segmentation 228 

gene network (Karaiskos et al. 2017; Ingham 1988) (Fig. 2E, Supplemental Fig. S7, Supplemental Table 229 

3). For example, pattern 2 corresponds to the mesoderm and includes mesoderm determinant gene twist 230 

(twi), while pattern 13 corresponds to the thoracic segments and includes known gap gene Kruppel (Kr) 231 

(Leptin 1991; Preiss et al. 1985). Similarly, patterns 9 and 12 correspond to two spatially alternating 232 

striped patterns that include known pair-rule genes even-skipped (eve) and odd-skipped (odd) respectively 233 

(Macdonald et al. 1986; Coulter et al. 1990).  234 

Alternatively, z information may be derived through serial sections. We thus next applied 235 

MERINGUE to spatial transcriptomics data of four consecutive histological sections of a human breast 236 

cancer biopsy ((Ståhl et al. 2016), see Supplemental Methods). Analyzing each section independently, we 237 

identified 414 genes that exhibit significant spatial variability (adjusted p-value < 0.05, > 5% spots) in at 238 

least one section out of 6214 genes tested (Supplemental Table 4). As the distance between cells across 239 
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serial sections are greater than the distances between cells within sections, we sought to identify spatial 240 

patterns consistent across layers by testing for spatial correlation between mutual nearest neighbors in 241 

space across sections (Supplemental Fig. S8A). Such a multi-layer integrated approach confirmed 242 242 

significantly spatially heterogeneous genes as being consistent across sections (Supplemental Table 4, 243 

Supplemental Fig. S8B). Of the remaining 172 genes that were identified as significantly spatially 244 

heterogeneous in individual sections but not across sections, visual inspection showed that although these 245 

genes exhibit spatial variability within sections, there was minimal correspondence across sections 246 

(Supplemental Fig. S8C). Such transcriptional patterns may be indicative of layer-specific subpopulations 247 

or transcriptional features. For structurally stereotypic tissues, consistency across tissue sections may be 248 

used as an additional criterion for identifying functionally relevant spatial patterns. Thus, MERINGUE is 249 

capable of accommodating 3D information to identify spatially heterogeneous genes in 3D as well as 250 

genes with spatial expression patterns consistent across serial sections. 251 

  252 

MERINGUE identifies spatial patterns in the mouse hypothalamic preoptic region using spatially 253 

resolved single-cell gene expression data by MERFISH 254 

Particularly in complex organs such as the mammalian brain, the ability to identify and 255 

interrogate the spatial organization of cell-types may provide additional insights into potential functional 256 

roles underlying the spatial organization of neuronal populations (y Cajal 1911; Amaral and Witter 1989; 257 

Arber 2012). We applied MERINGUE to analyze spatially resolved single-cell transcriptomics data of the 258 

hypothalamic preoptic region obtained using multiplexed error-robust fluorescence in situ hybridization 259 

(MERFISH) (Moffitt et al. 2018). Briefly, MERFISH allows individual RNA molecules in cells to be 260 

imaged and identified by using a combinatorial labeling strategy that encodes RNA species with error-261 

robust barcodes that can be read out bit-by-bit using sequential rounds of single-molecule fluorescence in 262 

situ hybridization (Chen et al. 2015). MERFISH has enabled simultaneous detection and identification of 263 

thousands of targeted RNA species, which can then be segmented into cells to provide spatially resolved 264 

single cell transcriptome measurements (Chen et al. 2015; Xia et al. 2019). Moffitt, Bambah-Mukku, et 265 
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al. previously used a 155 gene panel to characterize the hypothalamic preoptic region (1.8 mm × 1.8 mm 266 

× 0.6 mm, Bregma +0.26 to –0.34) in adult mice to identify 31 excitatory and 39 inhibitory neuronal 267 

subtypes in addition to non-neuronal cell-types using graph-based community-detection clustering 268 

analysis that relies solely on the gene expression of profiles of cells without considering the spatial 269 

information (Moffitt et al. 2018).  270 

We applied MERINGUE to analyze the 155 genes along with 5 blank control barcodes, DAPI, 271 

and poly-dT signals as negative controls within each cell-type and subtype to identify additional aspects 272 

of spatial heterogeneity. Applying a rigorous approach to identify genes with spatially heterogeneous 273 

expression patterns that are consistent across tissue layers and reproducible across animals (see 274 

Supplemental Methods), we were able to identify at least one such spatially heterogeneous gene in 34 out 275 

of 83 cell-types and subtypes analyzed (Fig. 3A, Supplemental Fig. S9, Supplemental Table 5). None of 276 

the blank control barcodes, DAPI, or poly-dT signals were identified as consistently spatially variable. 277 

MERINGUE further identified significant spatial gene expression heterogeneity within neuronal subtypes 278 

in both the anterior and posterior of the preoptic region. Likewise, spatial gene expression heterogeneity 279 

was identified in both inhibitory and excitatory neuronal subtypes. These aspects of spatial heterogeneity 280 

were consistent with previous published spatially-unaware variance and principal components-based 281 

analyses and visual inspection (Moffitt et al. 2018). 282 

By providing a quantitative framework to systematically identify and evaluate the statistical 283 

significance of spatial gene expression heterogeneity, MERINGUE identified that cells of inhibitory 284 

subtype I-6 in the anterior of the preoptic region can be partitioned into a superior and inferior spatial lobe 285 

marked by higher and lower expression of Sema3c and Necab1 respectively (Fig. 3A). These patterns are 286 

consistent across adjacent tissue sections. Likewise, cells of inhibitory subtype I-11 in the posterior 287 

preoptic region can be partitioned into a medial and lateral spatial group marked by lower expression of 288 

Gabra1 higher expression of Nos1 and higher expression of Gabra1 lower expression of Nos1, 289 

respectively, and this partition is consistent across adjacent tissue sections (Fig. 3B). Alternatively, Gad1, 290 

which marks inhibitory cells, is highly expressed among all cells and does not exhibit significant spatial 291 
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heterogeneity as expected. Inhibitory subtype I-11 was previously identified to be specifically activated 292 

by male mating based on the expression of immediate early gene c-Fos (Moffitt et al. 2018). While 293 

inhibitory subtype I-11 exhibited significant spatial heterogeneity in both male and female animals (Fig. 294 

3C), we found the fraction of Nos1+ I-11 neurons to be significantly higher in males than females (Fig. 295 

3D, Student’s t-test p-value = 0.03656). Esr1 and Irs4 were also identified to be significantly spatially 296 

heterogeneous in I-11 neurons in a pattern similar to Nos1 (Supplemental Fig. S9). Esr1 and Irs4 have 297 

been previously shown to display sex-differences in their expression (Xu et al. 2012; Moffitt et al. 2018). 298 

These observations suggest the potential presence of a finer Nos1+ I-11 neuronal subpopulation that is 299 

sexually dimorphic. Furthermore, while MERINGUE generally identified concordant spatial gene 300 

expression heterogeneity in both male and female animals (Supplemental Fig. S10), Tacr1 (Tachykinin 301 

receptor 1 also known as Neurokinin 1 receptor) was identified as significantly spatially heterogeneous in 302 

excitatory subtype E-8 neurons only in male and not female mice (Fig. 3E). No other tested neuronal 303 

subtype was identified to exhibit such consistently statistically significant sexually dimorphic spatial 304 

heterogeneity. Previously, E-8 neurons were identified to be activated in male mice during mating based 305 

on expression of c-Fos (Moffitt et al. 2018). However, E-8 neurons did not exhibit a significant difference 306 

in terms of their proportion to all cells between female and male mice (Student’s t-test p-value = 0.268). 307 

Likewise, we confirmed that the fraction of cells expressing Tacr1 in E-8 neurons is not significantly 308 

different between male and female mice (Student’s t-test p-value = 0.429). However, when we quantified 309 

the fraction of cells driving the spatial heterogeneity of Tacr1 expression based on LISA, we observe a 310 

significant difference between male and female mice (Fig. 3F, Student’s t-test p-value = 0.01316). Tacr1 311 

knockout mice have been previously observed to exhibit deficits in sexual behavior (Berger et al. 2012). 312 

The sexually dimorphic spatial organization of Tacr1 expression in E-8 neurons may thus suggest a 313 

sexually dimorphic difference in connectivity responsible for its sexually dimorphic activation in sexual 314 

behavior. In this manner, MERINGUE enables quantitative and systematic evaluation of spatial gene 315 

expression heterogeneity within transcriptionally distinct cell-subtypes from single cell spatially resolved 316 

transcriptomics data.  317 
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 318 

Spatially informed clustering identifies transcriptionally and spatially distinct subtypes of cells 319 

Spatial organization may play an important role in shaping cellular identities. Likewise, we may 320 

expect unsupervised clustering based on transcriptional profiles alone to recover spatially organized cell 321 

populations. However, for the aligned ISH data of the Drosophila melanogaster embryo, we find such 322 

gene-expression clustering analysis to aggregate cells expressing different pair-rule genes into a single 323 

transcriptional cluster due to these cells sharing many other commonly upregulated and downregulated 324 

genes despite their spatially distinct organization (Fig. 4A-B), consistent with previously published 325 

analyses (Karaiskos et al. 2017). However, as our spatial analysis was able to distinguish between the two 326 

alternating striped spatial patterns marked by expression of pair-rule genes eve and odd respectively (Fig. 327 

2E), we sought to incorporate spatial information to help distinguish these spatially distinct but 328 

transcriptionally similar groups of cells. 329 

Briefly, as in expression-based clustering, we constructed a neighbor graph where nodes are cells 330 

and nodes are connected with an edge if the represented cells that are within the k-most transcriptionally 331 

similar cells for some user-selected resolution parameter k. We incorporated spatial information by 332 

weighing the edges of the network by the distance (�� between two neighborhoods ��, �� in the adjacency 333 

representation W (see Methods): 
�

���� �
� 1. Again, use of such a neighborhood representation can 334 

accommodate the non-homogenous density of cells in tissues compared to a Euclidean distance-based 335 

measure of spatial distance. In this manner, if two cells are closer in space (���  is small), their 336 

transcriptional similarity will give greater weight in the graph-based clustering. Incorporating these 337 

spatial weights into our graph-based clustering with all other parameters kept constant, we were able to 338 

split the cluster of cells expressing either eve or odd into two subpopulations, as desired (Fig. 4C). 339 

Moreover, such spatially informed clustering generally preserved all other subpopulations and did not 340 

result in additional splitting for other subpopulations (Fig. 4D). Furthermore, we demonstrated using 341 

simulated data how such incorporation of spatial information can be used to distinguish transcriptionally 342 
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identical but spatially distinct clusters of cells (Supplemental Fig. S11). In a biological setting, however, 343 

cells from the same cell-type may populate spatially distinct locations but such distinct spatial locations 344 

alone would not necessarily indicate the presence of finer subtypes. We thus suggest that such spatially 345 

informed clustering to be complementary to differential expression analysis, whereby identified spatially 346 

distinct cell subpopulations should be analyzed for significantly differentially expressed genes to ensure 347 

the presence of significant, likely subtle, transcriptional differences. Therefore, by incorporating spatial 348 

information, in conjunction with differential expression analysis, we can identify finer, transcriptionally 349 

and spatially distinct subpopulations. 350 

Having demonstrated that incorporation of spatial information via graph-weighting can be applied 351 

to identify finer transcriptionally and spatially distinct subpopulations of cells, we next sought to apply 352 

this approach to identify finer neuronal subtypes in the preoptic region profiled by MERFISH (Moffitt et 353 

al. 2018). Focusing on inhibitory neurons, we performed spatially informed clustering analysis on all 354 

inhibitory cells in the same animal and tissue layer and compared resulting clusters to previous 355 

annotations (Fig. 4E-F, see Supplemental Methods). We found that among the eight most populous 356 

inhibitory neuronal subtypes (clusters with >100 cells each), our spatially informed clustering was able to 357 

produce comparable clusters with the exception of I-2 and I-11, which were each split into two subtypes 358 

(Fig. 4G). I-11 was split into two subtypes, cluster 10 (C10) and cluster 5 (C5), that significantly 359 

differentially expressed genes including Nos1 (Fig. 4H, Supplemental Fig. S12A), consistent with our 360 

observations of significant spatial heterogeneity in Nos1 expression among I-11 neurons. Indeed, the two 361 

I-11 subtypes appear to be spatially distinct with C10 positioned more medially and C5 more laterally in 362 

the posterior preoptic region (Fig. 4I). Likewise, I-2 was split into two subtypes, cluster 3 (C3) and cluster 363 

8 (C8), that significantly differentially upregulated genes including Cplx3 and Dgkk, respectively (Fig. 4J, 364 

Supplemental Fig. S12B-C). Previously, I-2 neurons were observed to overlap with both the sexually 365 

dimorphic nucleus of the preoptic area (SDN-POA) as well as other anatomical nuclei such as the bed 366 

nucleus of the stria terminalis (BNST) (Moffitt et al. 2018). By refining I-2 into two finer subtypes, C8 is 367 

observed to overlap more so with the BNST, while C3 comparably more so with the SDN-POA (Fig. 4K, 368 
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Supplemental Fig. S12C). I-2 neurons were previously observed to exhibit sexually dimorphic activation 369 

during mating and aggression based on the expression of immediate early gene c-Fos (Moffitt et al. 370 

2018). When we compare activation of the two I-2 subtypes based on significant c-Fos expression, we 371 

observe comparatively greater activation during mating behavior in one subtype than the other (Fig. 4L). 372 

This suggests that the activation in I-2 neurons observed previously may be driven by one of the two I-2 373 

subtypes. While tuning parameters for regular graph-based clustering without spatial information can also 374 

achieve splitting of I-2 and I-11, other inhibitory neuronal clusters can become over split (Supplemental 375 

Fig. S12D). Therefore, by incorporating spatial information via graph-weighting, MERINGUE provides 376 

an alternative approach to tease apart spatially distinct subpopulations without impacting other 377 

transcriptionally distinct subtypes.  378 

 379 

MERINGUE identifies putative cell-cell communication between cell-types  380 

Spatially resolved transcriptomics data offers opportunity to identify gene expression patterns that 381 

may be indicative of putative cell-cell communication between spatially co-localized cell-types. Previous 382 

computational approaches for inferring cell-cell communication from single-cell RNA-sequencing data 383 

have relied on correlations or co-expression of receptor genes in one cell type and corresponding 384 

expression of ligand genes in another cell type (Ramilowski et al. 2015b; Smillie et al. 2019; Vento-385 

Tormo et al. 2018; Fan et al. 2020). Spatially resolved transcriptomics data provides the opportunity to 386 

infer potential cell-cell communication by identifying spatially complementary expression patterns 387 

between genes corresponding to interacting surface proteins such as receptors and ligands on spatially 388 

neighboring cells. To enable such analyses, we further build on MERINGUE’s spatial cross-correlation 389 

functionalities by developing an inter-cell-type spatial-cross correlation function to identify potential 390 

complementary spatial patterns of gene expression across spatially co-localized cell-types (Fig. 1D, 391 

Supplemental Fig. S13A-D). However, unlike the spatial auto-correlation function, this inter-cell-type 392 

spatial-cross correlation function is not solvable and thus significance must be assessed using permutation 393 

to derive a null model. We enhance computational efficiency by implementing a parallelized, adaptive 394 
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permutation testing approach and assess significance using a permutation-based random label null model. 395 

We confirm using simulations that such a permutation-based assessment produces the expected type-I 396 

error rate (Supplemental Fig. S13E).  397 

We first apply our approach identify gene expression patterns that may be indicative of putative 398 

cell-cell communication between cells on beads corresponding to the Purkinje layer with cells on spatially 399 

adjacent beads in Slide-Seq data of the mouse cerebellum (Fig. 5A). We use a set of over 2,500 known 400 

receptor-ligand pairs previously supported by orthogonal biological validations (Ramilowski et al. 401 

2015a). Restricting to well detected (CPM > 0 in more than 30 cells) receptor genes in the Purkinje layer 402 

beads and well detected ligand genes in the spatially adjacent beads, we applied MERINGUE to test for 403 

significant spatial cross correlation between all receptor and ligand gene pairs. We identified statistically 404 

significant inter-cell-type spatial cross-correlation between expression of Ptprz1 (Protein Tyrosine 405 

Phosphatase Receptor Type Z1 i.e. PTPζ) in beads corresponding to Purkinje layer and expression of its 406 

ligand Ptn (secreted growth factor pleiotrophin) in spatially adjacent beads (Fig. 5B-C). Ptprz1 has been 407 

previously identified to be expressed by Purkinje neurons while Ptn has been previously identified to 408 

distribute along Bergmann glial fibers in postnatally developing cerebellum (Matsumoto et al. 1994). 409 

Although this Slide-Seq dataset does not provide single-cell resolution, we confirm significant co-410 

expression of Ptprz1 with Purkinje cell specific promoter Pcp2 (Fisher’s exact p-value = 2.3 × 10-18), 411 

suggestive that the Ptprz1 expression may be attributed to Purkinje cells within the Purkinje layer beads. 412 

Likewise, we confirm significant co-expression of Ptn with Slc1a3 (Glutamate Aspartate Transporter i.e. 413 

GLAST), a glutamate transporter expressed by Bergmann glia (Fisher’s exact p-value = 4.5 × 10-36). In 414 

contrast, restricting to well detected ligand genes in the Purkinje layer beads and well detected receptor 415 

genes in the spatially adjacent beads (Fig. 5D-E), we do not identify significant spatial cross correlation 416 

between any receptor and ligand gene pairs, including between Ptn expression in beads corresponding to 417 

Purkinje layer and Ptprz1 expression in spatially adjacent beads, indicative of the cell-type specificity of 418 

inferred receptor-ligand interactions. Previous studies with cerebellar slice culture systems have shown 419 

that Ptn-Ptprz1 signaling is involved in the morphogenesis of Purkinje dendrites (Tanaka et al. 2003). The 420 
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identification of such putative cell-cell communication between Bergmann glia and Purkinje cells may be 421 

suggestive of the potential for glial signals to actively regulate neuronal function and contribute to 422 

sustained plasticity in adult brains (Barres 2008).  423 

We next sought to identify gene expression patterns that may be indicative of putative cell-cell 424 

communication between cell-types using single-cell resolution MERFISH data of the preoptic region. 425 

Previously, Moffitt, Bambah-Mukku, et al. visually noted that aromatase (Cyp19a1) enriched inhibitory I-426 

2 neurons displayed substantial spatial overlap with estrogen receptor (Esr1) enriched neuronal subtypes 427 

(Moffitt et al. 2018). Aromatase is an enzyme that converts testosterone to estrogen, thereby modulating 428 

steroid hormone signaling in the preoptic region. The spatial organization of these aromatase-enriched 429 

neuronal subtypes with Esr1-enriched cells suggest that estrogen synthesized by these aromatase-430 

expressing neurons may be interacting with estrogen receptors on spatially adjacent Esr1-expressing cells 431 

in a paracrine manner. To quantitatively assess to putative cell-cell communication between neuronal 432 

subtypes and spatially neighboring cells via such paracrine signaling, we applied MERINGUE to assess 433 

for significant spatial cross-correlation between Cyp19a1 expression in all neuronal subtypes and Esr1 434 

expression in spatially adjacent neurons. Indeed, we are able to identify statistically significant spatial 435 

cross-correlation between Cyp19a1 expression in I-2 neurons and Esr1 expression in spatially adjacent 436 

neurons in a manner that is consistent across tissue layers and reproducible across animals (Fig. 6A). In 437 

contrast, neuronal subpopulations I-13 also express Cyp19a1 but do not exhibit significant spatial cross-438 

correlation with Esr1 in surrounding cells (Fig, 6B-C, Supplemental Fig. S14A). Furthermore, we also 439 

apply MERINGUE to test for spatial cross-correlation between Cyp19a1 expression in all neuronal 440 

subtypes and androgen receptor (Ar) expression in spatially adjacent neurons and do not identify 441 

consistently significant associations (Supplemental Fig. S14B), thereby highlighting the non-randomness 442 

of the Esr1 juxtaposition. This thus highlights MERINGUE’s potential to quantitatively and 443 

systematically identify complementary gene expression patterns that may be indicative of cell-cell 444 

communication.   445 

 446 
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Discussion 447 

Spatially resolved transcriptomic measurements demand computational approaches to identify 448 

and characterize significant spatial gene expression heterogeneity. Here, we presented MERINGUE as a 449 

density-agnostic approach to characterize spatially heterogeneous gene expression by identifying genes 450 

with spatially auto-correlated expression and gene-pairs with spatially cross-correlated expression. We 451 

validate our approach by analyzing spatially resolved transcriptomics data from both sequencing and 452 

imaging-based methods in 2D and 3D to recover known biologically relevant spatial patterns. Our 453 

analysis of the mouse preoptic region by MERFISH revealed sexually dimorphic spatial organization of 454 

Tacr1 expression in excitatory E-8 neurons and identified additional neuronal subpopulations within 455 

inhibitory I-2 and I-11 neurons with spatially distinct organization that may play roles in murine sexual 456 

behavior. MERINGUE is highly scalable and computationally efficient compared to previous spatial 457 

analysis methods (Supplemental Fig. S15). Furthermore, MERINGUE is robust to spatial variations in 458 

cellular density and can thus better accommodate non-uniform cellular densities common in tissues.  459 

In comparison with previously published spatial gene expression analysis methods, while 460 

MERINGUE identifies and groups spatially heterogeneous genes into primary spatial patterns, it does not 461 

interpret identified spatial patterns based on pre-defined aggregated or alternating spatial patterns. In this 462 

manner, we find MERINGUE to be complementary to previously published spatial gene expression 463 

analysis methods in characterizing the spatial patterns of spatially heterogeneous genes. Likewise, we find 464 

MERINGUE to be complementary to expression-based clustering analysis in order to identify additional 465 

aspects of spatial heterogeneity within cell clusters or shared spatial gradients across cell clusters. In 466 

addition, in analyzing spatially resolved single cell gene expression datasets obtained from different 467 

technologies, MERINGUE may also be applied in combination with different normalization and error 468 

model schemes such as cell volume-based normalization for imaging data (Moffitt et al. 2018), cell 469 

density normalization for ST data (Saiselet et al. 2020). Furthermore, for zero-inflated transcriptomics 470 

measurements, additional drop-out error modeling or imputation of drop-outs may be applied prior to 471 

MERINGUE analysis (Kharchenko et al. 2014; Hou et al. 2020). 472 
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Finally, while MERINGUE uses spatial cross-correlation analysis to identify gene expression 473 

patterns that may be indicative of putative cell-cell communication, such inference is based on spatial 474 

proximity, which restricts inferred interactions to short-range interactions or chemical cues. This is 475 

limiting for tissues such as the mammalian brain where neuronal communication and interactions often 476 

span long distances due to long axons and dendritic processes. We anticipate that additionally combining 477 

single-cell transcriptomics profiling with neuronal tracing could derive new binary weight matrices that 478 

would fit into MERINGUE’s analysis framework, enabling study of a more comprehensive cell-cell 479 

interactions in a spatially resolved manner. Likewise, in the future, computational approaches such as 480 

MERINGUE, in combination with systematic biological perturbations, can help elucidate the mechanisms 481 

responsible for these spatial patterns and enhance our understanding of the spatial organization of and 482 

communications between cell-types and cell-states within tissues.  483 

 484 

  485 
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Methods 486 

 487 

MERINGUE approach 488 

 489 

Data preprocessing and quality control 490 

Data must be corrected for sequencing depth differences and other technically driven variation of 491 

expression magnitude prior to MERINGUE. CPM normalization without log transforming was applied to 492 

all spatial transcriptomics datasets. For MERFISH data, RNA counts were normalized per cell by the 493 

imaged volume of each cell per the originally published analysis (Moffitt et al. 2018).  494 

 495 

Adjacency weight matrix 496 

Given a set of spatial positional coordinates for spatially resolved datasets, such as cells, MERINGUE 497 

represents these cells as connected neighborhoods in space using an adjacency weight matrix �, where:  498 

���   1      �! "#$$�  �	� "#$$�  ��# ����"#	%       
0     �! "#$$�  �	� "#$$�  ��# 	�% ����"#	%' 

Cells are defined as adjacent using Delaunay triangulation. Note, the Delaunay triangulation of a discrete 499 

set of points, in this case cells in space, is equivalent to the Voronoi diagram for the same set of points 500 

(Okabe et al. 1992). This approach is thus equivalent to defining cells as adjacent if they have Voronoi 501 

polygons, as inferred from Voronoi tessellation, that share an edge. For biological interpretability, 502 

adjacency relationships beyond a certain spatial distance can also be ignored. Delaunay triangulation can 503 

also accommodate 3-dimensional data.  504 

 505 

Identifying significantly spatially heterogeneous genes  506 

We define spatially heterogeneous genes as genes with uneven, often aggregated or patterned, spatial 507 

distribution of expression magnitudes. MERINGUE identifies such spatially heterogeneous genes by 508 

computing Moran’s I (Moran 1950):  509 
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for each gene given its normalized gene expression vector � across a population of � cells using the 510 

adjacency weight matrix � described previously to detect for positive spatial autocorrelation. 511 

 512 

The expected value of � under the null hypothesis of no spatial autocorrelation can be solved by 513 

computing the first moment (Getis 1995) and simplified to: 514 

(���   �1
� � 1 

Likewise, variance can be derived using the second moment and simplified to: 515 

)�����   � * �
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We implement these calculations in C++ using Rcpp (Eddelbuettel and François 2011). 517 

 518 

In a given dataset, we evaluate all genes for spatial heterogeneity and apply the Benjamini-Hochberg 519 

procedure to correct for multiple testing and control for false discovery (Benjamini and Hochberg 1995).  520 
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 521 

We assume here that the expression magnitudes represented by each neighborhood is comparable such 522 

that observed differences in gene expression levels across neighborhoods are not the result of different 523 

sequencing depths or other technical confounders. In this manner, � must already be normalized to 524 

control for variability in sequencing depth or other technical confounders, where appropriate, prior to 525 

analysis with Moran’s I. Likewise, as Morans’s I is not defined for constant signals, and thus genes 526 

without any expression variability are omitted from analysis.  527 

 528 

If the data is produced by a mechanism that inherently induces some autocorrelation, such as high 529 

variability between spatially segregated batches or presence of noisy hotspots, then such a null hypothesis 530 

would not be appropriate, and evaluation of significance must be done using permutation. We show at 531 

least for a random subset of genes in our tested datasets that the null hypothesis is appropriate and thus 532 

results in essentially identical p-values regardless of approach (Supplemental. Fig. 2B). 533 

 534 

Characterizing the scale of significantly spatially heterogeneous genes 535 

For a given gene x identified as significantly spatially heterogeneous, MERINGUE next quantifies the 536 

scale of the spatial pattern by calculating the Local Indicators of Spatial Association (Anselin 2010) 537 

(LISA) for each neighborhood �: 538 

��  � ��� � �� ∑ ���
�
� ��� � ��

∑ ��� � ����
�

 

LISA relates to Moran’s I via: 539 

�  . ���
�

�

 

And as such, LISA also contains a closed form that can be solved for its expected value and standard 540 

deviation under the null hypothesis of no spatial autocorrelation. We define the scale of a gene’s spatial 541 

pattern as the percentage of cells with a LISA that is statistically significant i.e. has a p-value below an 542 
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alpha threshold (default: 0.05). Downstream analyses can be restricted to spatially heterogeneous genes of 543 

a sufficient scale, defined by default as 5% of cells.  544 

 545 

Again, these calculations are implemented in C++ using Rcpp (Eddelbuettel and François 2011). 546 

 547 

For visualization purposes, we further implement a signed LISA score: 548 


��  
�3	��� � �� *  � ��� � �� ∑ 2��
�
� ��� � ��

∑ ��� � ����
�

 

 549 

Primary pattern determination using spatial cross-correlation analysis 550 

After identifying significantly spatially heterogeneous genes of a sufficient scale, MERINGUE groups 551 

these genes into primary spatial patterns. We calculate a spatial cross-correlation index (���) between all 552 

pairs of these genes. For N cells, gene x, and gene y, the ��� can be calculated as: 553 

���  �
2 ∑ ∑ ���

�
�

�
�

∑ ∑ ������ � ����� � ���
�

�
�

�∑ ��� � ����
�

�∑ ��� � ����
�

 

The ��� for all pairs of genes forms a spatial cross-correlation matrix, which we use as the basis for 554 

hierarchical clustering. Clusters of genes are then identified using dynamic tree cutting (Langfelder et al. 555 

2008) such that highly spatially cross-correlated genes fall into the same clusters, thus comprising the 556 

primary spatial patterns. By default, the hybrid dynamic tree cutting approach is used.  557 

 558 

We visualize these primary patterns by interpolating across spatial regions not covered by cells using 559 

Akima interpolation (Akima 1996a, 1996b). 560 

 561 

Spatially informed clustering 562 

To identify spatially distinct but transcriptionally similar subpopulations, we begin with graph-based 563 

expression clustering. Specifically, we construct a k-nearest neighbor graph on the reduced principal 564 
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components space derived from normalized gene expression. In such a graph, each node is a cell and they 565 

are connected with an edge if they are among the k-nearest neighbors based on transcriptional similarity. 566 

To introduce spatial information, we weigh the edges of the graph based on the geodesic spatial distance 567 

between the two nodes’ cells. The geodesic spatial distance is computed based on the adjacency matrix � 568 

where two cells would have a spatial distance of 1 if they are neighbors or 2 if they are neighbors of 569 

neighbors and so forth. We then transform the spatial distance into a weight that is inversely proportional 570 

to the distance such that cells closer together (i.e. with a small distance) will be given higher weight and 571 

cells farther apart (i.e. large distance) will be given a smaller weight: 2#�34%  �

�������� �
� 5 where 6 572 

and 5 are pseudocounts to guard against excessively large and small weights respectively. By default, we 573 

used 6  5  1, though the unit and magnitude of both 6 and 5 will depend on the unit and magnitude of 574 

��
%�	"#. We then apply Louvain graph-based clustering to the resulting weighted graph (Phyu and Myat 575 

Min 2019).   576 

 577 

Inference of cell-cell communication using inter-cell-type spatial cross-correlation analysis 578 

To infer cell-cell communication between spatially co-localized cell-types, MERINGUE focuses on 579 

identifying complementary gene expression patterns between known receptor-ligand pairs (Ramilowski et 580 

al. 2015b).  581 

 582 

For each receptor-ligand pair, we compute an inter-cell-type spatial cross-correlation (����) between 583 

expression of receptor � for the � cells of cell-type A and the expression of ligand � for the � cells of 584 

cell-type B: 585 

 586 
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Here, the inter-cell-type adjacency weight matrix ������
 1 if a cell of cell-type A and a cell of cell-type 588 

B are inferred to be adjacent or vice versa and ������
 0 otherwise to capture only spatial cross-589 

correlation patterns between the two cell-types. 590 

 591 

We assess statistical significance by comparing the observed ���� with the likelihood of observing such 592 

an extremely positive value under a permutation-based random labeling model randomly permuting cell 593 

labels. To enhance computational efficiency, we allow for parallelization across multiple cores and use an 594 

adaptive permutation testing approach whereby receptor-ligand pairs are first assessed for significance 595 

with 100 permutations by default, and putatively significant hits with permutation p-values < 1/100 are 596 

then reassessed with 1000 permutations and so forth. Additional gene pairs with known interacting 597 

products such as hormone-receptors can also be evaluated by this approach. 598 

 599 

Interactive application 600 

An interactive application built on Shiny (Chang et al, 2020) can be launched directly from R sessions to 601 

enable interactive visual exploration of MERINGUE results and statistics. 602 

 603 

Software availability  604 

MERINGUE is programmed in C++ and available as an open-source R software package (R Core Team, 605 

2020) with the source code available in the Supplemental Material and on GitHub at 606 

https://github.com/JEFworks-Lab/MERINGUE. Additional documentation and tutorials are available at 607 

https://JEF.works/MERINGUE.  608 

 609 
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Figure Legends 761 

 762 

Figure 1. Overview of MERINGUE. A. MERINGUE encodes spatial relationships among spatially 763 

resolved datasets, such as cells, using a binary adjacency weight matrix �. Two cells are considered 764 

adjacent if their neighborhoods inferred from Voronoi tessellation share an edge (left). The binary 765 

adjacency weight matrix � is visualized by plotting all cells in space with a red line connecting cells if 766 

cells are adjacent and no line otherwise (right). B. MERINGUE identifies genes with spatially 767 

heterogeneous expression using � to compute and evaluate the significance of a spatial auto-correlation 768 

index � for each gene. When a gene’s expression magnitude between spatially adjacent cells are highly 769 

correlated, � will be positive, indicative of spatial heterogeneity. Three simulated gene expression profiles 770 

are provided to illustrate examples of high and low spatial heterogeneity with red indicating high 771 

expression and blue indicating low expression. C. MERINGUE groups identified spatially heterogeneous 772 

genes into primary spatial patterns by computing a spatial cross-correlation index for every gene pair. The 773 

resulting spatial cross-correlation matrix is used to construct a hierarchical dendrogram (top). Dynamic 774 

tree cutting is applied to partition genes into patterns (bottom). Groups of genes are z-scored and 775 

averaged, with empty regions filled in using Akima interpolation to visualize final patterns. D. 776 

MERINGUE identifies gene expression patterns that may be indicative of putative cell-cell 777 

communication using an inter-cell-type weight matrix ����  between two cell-types, which can then be 778 

used to compute an inter-cell-type spatial cross-correlation index ���� between two genes. Two cell-types 779 

A and B are shown as green triangles and orange squares respectively. ����  is visualized with a red line 780 

for cells of cell-type A spatially adjacent to cells of cell-type B (top left). Cell-type A cells express gene A 781 

at variable levels while cell-type B cells express gene B at variable levels, with red indicating high 782 

expression and blue indicating low expression (top right). Cell-type A cells do not express gene B and 783 

cell-type B cells do not express gene A, resulting in a generally negative Pearson’s correlation (R) 784 

between the two genes (bottom left). However, expression of gene A in cells of cell-type A is highly 785 

 Cold Spring Harbor Laboratory Press on September 20, 2021 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 35

correlated with the expression of gene B in spatially adjacent cells of cell-type B, resulting in a positive 786 

����. The significance of this ���� is assessed by permutation (bottom right).  787 

 788 

Figure 2. Application of MERINGUE to 2D spatial transcriptomics data of the main olfactory bulb 789 

(MOB) and 3D aligned ISH data of the Drosophila melanogaster embryo. A. Spatially un-aware 790 

single-cell clustering analysis identifies 5 transcriptionally distinct clusters corresponding to various 791 

known cell layers in the MOB. Spatial spots are colored based on their inferred cell layer annotation. B. 792 

MERINGUE identifies genes with significantly spatially heterogeneous expression in the MOB. Select 793 

genes are shown. C. MERINGUE groups genes with significantly spatially heterogenous expression in 794 

the MOB into 5 primary spatial patterns. Select patterns are shown. D. MERINGUE’s adjacency weight 795 

matrix visualized for aligned 3D in situ hybridization data of the Drosophila melanogaster embryo. Each 796 

point is an aligned cell. Cells are connected with a red line if they are inferred to be adjacent. A top view 797 

and rotated side view are shown. E. MERINGUE groups genes into spatial patterns in the Drosophila 798 

melanogaster embryo. Representative genes from select identified patterns are shown.  799 

 800 

Figure 3. MERINGUE identifies spatial heterogeneity within cell-types in the preoptic region of the 801 

mouse hypothalamus using MERFISH. A. (left) Expression of three sample genes in Inhibitory I-6 802 

neurons in female naïve animal 7 (FN7). Each point is a cell. Cells are colored by expression with red 803 

denoting high expression and blue denoting low expression. Cells that are not I-6 cells are colored in 804 

grey. Gad1 is highly expressed in all I-6 neurons while Necab1 and Sema3c exhibit significant spatial 805 

variation. (right) Expression of Sema3c in I-6 in adjacent tissue sections in FN7 exhibit similar spatial 806 

patterning. B. (left) Expression of three sample genes in Inhibitory I-11 neurons in FN7. Again, Gad1 is 807 

highly expressed in all I-11 cells while Gabra1 and Nos1 exhibit significant spatial variation. (right) 808 

Expression of Nos1 in I-11 neurons in adjacent tissue sections in FN7 exhibit similar spatial patterning. 809 

C. Expression of Nos1 in I-11 neurons in representative male naïve animals MN5, MN8, and MN9 show 810 

similar spatial patterns to the female animal in (B). D. Fraction of Nos1+ I-11 cells for male and female 811 
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animals across tissue layers from the anterior to posterior preoptic region. Each dot represents one tissue 812 

layer in one animal. Lines represent fitted curves for males and female animals.  E. Expression of Tacr1 813 

in E-8 neurons in female (top) and male (bottom) animals. F. Scale spatial heterogeneity of Tacr1 in E-8 814 

neurons for male and female animals across tissue layers from the anterior to posterior preoptic region. 815 

Each dot represents one tissue layer in one animal. Lines represent fitted curves for males and female 816 

animals.   817 

 818 

Figure 4. Spatially informed clustering distinguishes spatially distinct subpopulations of cells. A. 819 

Expression-based clustering of 3035 stage 6 Drosophila melanogaster embryo cells with 84 marker genes 820 

by aligned ISH identifies approximately 5 transcriptionally distinct clusters. (top) UMAP embedding 821 

colored by identified cluster annotations. (bottom) Spatial coordinates colored by identified cluster 822 

annotations. B. Expression of select marker genes on the UMAP embedding with red denoting high 823 

expression and blue denoting low expression. C. Spatially informed clustering splits expression-based 824 

clusters in spatially coherent manner. Again (top) UMAP embedding colored by identified spatially 825 

informed cluster annotations. (bottom) Spatial coordinates colored by identified spatially informed cluster 826 

annotations. D. Correspondence between expression-based clusters in (A) and spatially informed clusters 827 

in (C) highlights high correspondence between most clusters with the exception of one cluster being split 828 

into two. E. UMAP embedding of populous inhibitory neuronal subtypes in one posterior preoptic tissue 829 

section from one animal measured using MERFISH, where each point is a cell colored by the original 830 

subtype annotations. F. Same UMAP embedding as (E) where each point is a cell colored by the spatially 831 

informed clustering annotation. Black dashed lines highlight clusters that have now split. G. 832 

Correspondence between expression-based clusters in (E) and spatially informed clusters in (F) highlights 833 

high correspondence between most clusters with the exception of cells originally annotated as I-2 and I-834 

11 now being split into two. H. Same UMAP embedding as (E) where each point is a cell colored by 835 

Nos1 expression for cells originally annotated as I-11. I. Spatial location of cells within the tissue colored 836 

by their spatially informed cluster assignment for cells originally annotated as I-11. J. Same UMAP 837 
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embedding as (E) where each point is a cell colored by Clpx3 expression for cells originally annotated as 838 

I-2. K. Spatial location of cells within the tissue colored by their spatially informed cluster assignment for 839 

cells originally annotated as I-2. Regions corresponding to the BNST and SDN are highlighted with blue 840 

and red dashed lines respectively. Representative slice in representative animal shown. L. Percentage of 841 

activated cells based on c-Fos expression during female (FS) and male (MS) sexual behavior for spatially 842 

informed clusters C3 and C8 originally annotated as I-2. Boxes in the boxplot denote the median values 843 

and inner quartile ranges (IQR) and whiskers denote 1.5xIQR with additional outliers represented as 844 

points. 845 

 846 

Figure 5. MERINGUE identifies putative cell-cell communication in the cerebellum using SlideSeq 847 

data. A. Adjacency relationship between SlideSeq beads. Orange dots correspond to beads previously 848 

annotated as corresponding to the Purkinje layer. Green dots correspond to beads that are spatially 849 

adjacent. Grey lines connect each bead with its spatial neighbors and is agnostic to bead density. B. (left) 850 

Expression of receptor Ptprz1 in beads annotated to correspond to the Purkinje layer. (right) Expression 851 

of corresponding ligand Ptn in spatially adjacent beads. Same select region highlighted. C. Barplot of -852 

log10(adjusted p-value) for the inter-cell-type spatial cross correlation statistic of all receptors in Purkinje 853 

layer beads versus ligands in the spatially adjacent beads. Red line indicates alpha = 0.2 multiple testing 854 

corrected significance threshold. D. (left) Expression of ligand Psap in beads annotated to correspond to 855 

the Purkinje layer. (right) Expression of corresponding receptor Gpr37l1 in spatially adjacent beads. 856 

Same select region highlighted as (D). E. Barplot of -log10(adjusted p-value) for the inter-cell-type spatial 857 

cross correlation statistic of all ligands in Purkinje layer beads versus receptors in the spatially adjacent 858 

beads.  859 

 860 

Figure 6. MERINGUE systematically and quantitatively evaluates for putative cell-cell 861 

communication for neuronal subtypes in the preoptic region using MERFISH data. A. Distribution 862 

of -log10(p-values) for the spatial cross-correlation between aromatase (Cyp19a1) expression in neuronal 863 

 Cold Spring Harbor Laboratory Press on September 20, 2021 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 38

subtypes and Esr1 expression in adjacent cells across animals. Boxes in the boxplot denote the median 864 

values and inner quartile ranges (IQR) and whiskers denote 1.5xIQR with additional outliers represented 865 

as points. Red dotted line is the alpha=0.05 significance threshold. Generally, inhibitory neuron subtype I-866 

2 exhibits significant spatial cross-correlation between aromatase expression and Esr1 expression in 867 

adjacent cells in a manner that is consistent across animals. B. Aromatase (Cyp19a1) expression in I-2 868 

neurons in one tissue slice in one animal with red indicating high expression and blue indicating low 869 

expression. Representative slice and animal shown. Select areas are highlighted in the zoom-in.  C. Esr1 870 

expression in cells neighboring I-2 neurons in one tissue layer in one animal with red indicating high 871 

expression and blue indicating low expression. Representative slice and animal shown. The same select 872 

areas as (B) are highlighted in the zoom-in.  873 

 874 

 875 

 876 
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